INDEPENDENT ESTIMATES

ATTACHMENT B1
T006 - NORTH AMERICAN TRANSMISSION

Description		Total Amount	
1	CLEARING \& ACCESS FOR TRANSMISSION LINE CONSTRUCTION	$\$$	$12,359,030$
2	TRANSMISSION LINE FOUNDATIONS	$\mathbf{6 , 7 7 7 , 5 0 0}$	
3	STRUCTURES - TRANSMISSION LINE	$\$$	$12,081,851$
4	CONDUCTOR, SHIELDWIRE, OPGW	$\$$	$5,187,754$
5	TRANSMISSION LINE INSULATOR, FITTINGS, HARDWARE	$\$$	$1,328,890$
6	NEW DYSINGER SWITCHYARD	$\$$	$19,771,000$
7	STOLLE ROAD SUBSTATION WORKS	$\$$	$11,447,500$
8	MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS	$\$$	$32,473,291$
	CONTRACTOR MARK-UP (OH\&P) 15\%	$\$$	$15,214,022$
	SUBTOTAL:	$\$$	$116,640,839$
	CONTINGENCY (20\%)	$\$$	$23,328,168$
	TOTAL (A):	$\$$	$139,969,006$

9	SYSTEM UPGRADE FACILITIES
	CONTRACTOR MARKUP \& CONTINGENCY (35\%)
	TOTAL (B):
	TOTAL PROJECT COST (A+B):

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
5. TRANSMISSION LINE INSULATOR, FITTINGS, HARDWARE												
5.1	Tangent - Polymer V-String	399.0	Set	\$	900	\$	720	\$	1,620	\$	646,380	
5.2	Angle - Polymer V-String	15.0	Set	\$	1,300	\$	1,040	\$	2,340	\$	35,100	
5.3	Deadend - Polymer Double Deadend including Jumper	96.0	Set	\$	1,500	\$	1,350	\$	2,850	\$	273,600	
5.4	OPGW Assembly - Tangent	133.0	Set	\$	200	\$	150	\$	350	\$	46,550	
5.5	OPGW Assembly - Angle / DE	42.0	Set	\$	250	\$	150	\$	400	\$	16,800	
5.6	OHSW Assembly - Angle / DE	4.0	Set	\$	250	\$	150	\$	400	\$	1,600	
5.7	OPGW Splice Boxes	9.0	Set	\$	1,500	\$	1,000	\$	2,500	\$	22,500	
5.8	OPGW Splice \& Test	1.0	Sum			\$	10,800	\$	10,800	\$	10,800	
5.9	Spacer Dampers	1,880.0	Ea	\$	50	\$	35	\$	85	\$	159,800	
5.10	Vibration Dampers - Conductor	1,880.0	Ea	\$	32	\$	20	\$	52	\$	97,760	
5.11	Shieldwire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	10,000	\$	8,000	\$	18,000	\$	18,000	
TOTAL: T-LINE INSULATORS, FITTINGS, HARDWARE:										\$	1,328,890	
6. NEW DYSINGER SWITCHYARD												
6.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.0	Sum			\$	1,500,000	\$	1,500,000	\$	1,500,000	Supply \& Install
6.2	Substation Fence	2,450.0	LF			\$	200	\$	200	\$	490,000	Supply \& Install
6.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
6.4	Switches 3ph	16.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	112,000	
6.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
6.6	Line Switches 3 ph	5.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	150,000	
6.7	Instrument Transformers	1.0	Sum			\$	1,046,000	\$	1,046,000	\$	1,046,000	
6.8	Breakers	8.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	3,040,000	
6.9	Arrestors (3 per line)	15.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	112,500	
6.10	Line Traps	5.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	105,000	
6.11	Two (2) 345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000	
6.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	Supply \& Install
6.13	Low Profile Foundations	231.0	Ea			\$	5,000	\$	5,000	\$	1,155,000	Supply \& Install
6.14	Caisson DE Foundations	20.0	Ea			\$	50,000	\$	50,000	\$	1,000,000	Supply \& Install
6.15	Circuit Breaker Foundations	8.0	Ea			\$	75,000	\$	75,000	\$	600,000	Supply \& Install
6.16	Lightning Mast Foundations	15.0	Ea			\$	15,000	\$	15,000	\$	225,000	Supply \& Install
6.17	SST Foundation	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	
6.18	Control House and Pad (30 ' $\times 90$)	1.0	Sum	\$	650,000	\$	200,000	\$	850,000	\$	850,000	Supply \& Install
6.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	
6.20	Control Cables	1.0	Sum	\$	100,000	\$	100,000	\$	200,000	\$	200,000	
6.21	125VDC Batteries	2.0	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
6.22	Station Services	2.0	Ea			\$	25,000	\$	25,000	\$	50,000	Supply \& Install
6.23	Protection, Telecom and Metering Equipment (Panels)	30.0	Ea			\$	30,000	\$	30,000	\$	900,000	Supply \& Install
6.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
6.26	Control Conduits from Cable Tray to Equipment	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.27	Cable Trench Systems for Control Cables	1.0	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
6.28	Grounding	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	
6.29	Bus Support 1 Ph	93.0	Ea	\$	2,000	\$	1,000	S	3,000	\$	279,000	
6.30	Switch Stands	16.0	Ea	5	8,000	\$	3,000	\$	11,000	\$	176,000	
6.31	Fuse Stand	1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
6.32	Misc. Structures	1.0	Sum	\$	-	\$	52,000	\$	52,000	\$	52,000	
6.33	Substation A-Frame Structures Standalone	5.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	125,000	

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
6.34	Lightning Masts	15.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	180,000	
6.35	Arrestor Stands	15.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	52,500	
6.36	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
6.37	Connection of Existing Lines to Dysinger Switchyard	1.0	Sum			\$	3,400,000	\$	3,400,000	\$	3,400,000	Supply \& Install
TOTAL - D	SINGER SWITCHYARD:									\$	19,771,000	
7. STOLLE ROAD SUBSTATION WORKS:												
7.1	Switches 3ph	4.00	Ea	\$	5,000	\$	2,000	\$	7,000	\$	28,000	
7.2	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor-operators	1.00	Ea	\$	15,000	\$	15,000	\$	30,000	\$	30,000	
7.3	Instrument Transformers	1.00	Ea			\$	460,000	\$	460,000	\$	460,000	
7.4	Breakers	3.00	Ea	5	300,000	\$	80,000	\$	380,000	\$	1,140,000	
7.5	Arrestors (3 per line)	6.00	Ea	\$	6,500	\$	1,000	\$	7,500	\$	45,000	
7.6	Line Traps	1.00	Ea	\$	13,000	\$	8,000	\$	21,000	\$	21,000	
7.7	345 kV buses	1.00	Ea	\$	12,500	\$	17,500	\$	30,000	\$	30,000	Supply \& Install
7.8	Low Profile Foundations	91.00	Ea			\$	5,000	\$	5,000	\$	455,000	Supply \& Install
7.9	Circuit Breaker Foundations	3.00	Ea			\$	75,000	\$	75,000	\$	225,000	Supply \& Install
7.10	Lightning Mast Foundations	6.0	Ea			\$	15,000	\$	15,000	\$	90,000	
7.11	Control Cables	1.00	Sum	\$	100,000	\$	100,000	\$	200,000	\$	200,000	Supply \& Install
7.12	Protection, Telecom and Metering Equipment (Panels)	13.00	Ea			\$	30,000	\$	30,000	\$	390,000	Supply \& Install
7.13	SCADA and Communications	1.00	Sum			\$	125,000	\$	125,000	\$	125,000	Supply \& Install
7.14	Control Conduits from Cable Tray to Equipment	1.00	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
7.15	Cable Trench Systems for Control Cables	1.00	Sum			\$	750,000	\$	750,000	\$	750,000	
7.16	Grounding	1.00	Sum			\$	250,000	\$	250,000	\$	250,000	
7.17	Bus Support 1 Ph	54.00	Ea	\$	2,000	\$	1,000	\$	3,000	\$	162,000	
7.18	Switch Stands	4.00	Ea	\$	8,000	\$	3,000	\$	11,000	\$	44,000	
7.19	Misc. Structures	1.00	Sum			\$	20,000	\$	20,000	\$	20,000	Supply \& Install
7.20	Lightning Masts	6.00	Ea	\$	10,000	\$	2,000	\$	12,000	\$	72,000	Supply \& Install
7.21	Arrestor Stands	3.00	Ea	5	2,500	\$	1,000	\$	3,500	\$	10,500	
7.22	Miscellaneous Materials and Above / Below Ground Works	1.00	Sum			\$	750,000	\$	750,000	\$	750,000	
7.23	Interconnection arrangement at Stolle Rd Substation	1.00	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	
7.24	345 kV - 115kV 204/320/400 MVA Transformer	1.00	Ea	\$	3,900,000	\$	750,000	\$	4,650,000	\$	4,650,000	
7.25	Transformer Foundation with concrete moat and double steel grating	1.0	Ea			\$	150,000	\$	150,000	\$	150,000	
7.26	Firewall 30 ' long $\times 12^{\prime}$ tall $\times 1^{\prime}$ ' thick with footer	1.00	Ea			\$	100,000	\$	100,000	\$	100,000	Supply \& Install
TOTAL - STOLLE RD SUBSTATION WORKS:										\$	11,447,500	
8. MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:												
	Contractor Mobilization / Demobilization											
8.1	Mob / Demob	1.0	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	
	Project Management, Material Handling \& Amenities							\$	-	\$	-	
8.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision, Scheduler and	17.0	Months			\$	350,000	\$	350,000	\$	5,950,000	
8.3	Site Accommodation, Facilities, Storage	1.0	Sum			\$	1,800,000	\$	1,800,000	\$	1,800,000	
	Engineering							\$		\$	-	
8.4	Design Engineering	1.0	Sum			\$	3,750,000	\$	3,750,000	\$	3,750,000	
8.5	LidAR	1.0	Sum			\$	400,000	\$	400,000	\$	400,000	
8.6	Geotech	1.0	Sum			\$	800,000	\$	800,000	\$	800,000	
8.7	Surveying/Staking	1.0	Sum			\$	300,000	\$	300,000	\$	300,000	
	Testing \& Commissioning							\$	-	\$	-	
8.8	Testing \& Commissioning of T-Line and Equipment	1.0	Sum			\$	1,150,000	\$	1,150,000	\$	1,150,000	
	Permitting and Additional Costs							\$	-	\$	-	
8.9	Environmental Licensing \& Permitting Costs	1.0	Sum			\$	2,308,505	\$	2,308,505	\$	2,308,505	

Item	Description	Quantity	Unit				 nt Rate		Rate:			TAL:	Remarks
SUF 3.23	Arrestor Stand	3.0	Ea	\$	1,000	\$	1,000	\$	2,000		\$	6,000	
SUF 3.24	Misc Materials and Above / Below Ground Works	1.0	Sum			\$	120,000	\$	120,000		\$	120,000	Supply \& Install
SUF 3.25	Engineering, T\&C, PM, Indirects for SUF 3 (15\%)							\$	-		\$	333,525	Assumed 15\% to cover all misc costs
SUF 4.1	Lockport to Shaw 115kV Transmsision Line 102. NAT report indicated: Remove all limitations to achieve line conductor ratings as the limit. Terminal allowance included.	1.00	Sum			\$	500,000	\$	500,000		\$	500,000	The limiting equipment is not known scope undefined.
SUF 4.2	Engineering, T\&C, PM, Indirects for SUF 4.1 (15\%)							\$	-		\$	75,000	
SUF 5	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)										\$	3,750,000	Contingency for possible additional SUF upgrades
TOTAL - SYSTEM UPGRADE FACILITIES:											\$	12,977,025	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T006	
FEDERAL						Proposal 1	
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan	\$24,360	\$69,050
National Park Service	National Parks	Consultation; Special Use Permit	Only applies if National Park located in project area.	Depending on impact of project request for a special use permit may require a NEPA environmental assessment.			
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$27,800	\$94,000
NEPA	National Environmental Policy Act	Categorical Exclusion; EA Finding of No Impact; or EIS Record of Decision	With some exemptions, projects on federally owned lands and/or projects requiring federal permit approvals	Possible NEPA review due if federal agency coordination is required. Federal agency involved to determine if Categorical Exclusion applies. Assumes Article 7 covers NEPA requirements or if an EIS is required it is prepared under SEQRA Task.			
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)		
STATE							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Article VII Intervenor Fund payment expected to be $\$ 100,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans	\$600,000	\$3,100,000

NYS Public Service Commission / Department of Public Service (NYSDPS)	Part 102		Construction of a utility overhead transmission facility that will convey electric energy at 65 kV or higher for a distance of one mile or longer and are not subject to Article VII of the Public Service Law.	May include coordination or studies completed under other line items including: Visual assessment, SHPO determination, OPRHP consultation, Ecological Impacts Assessment	Advantage-Disadvantage Analysis		
NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan		
NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)		
Any State or local government agency that issues permits or approvals	State Environmental Quality Review Act (SEQRA)	Environmental Assessment (EA) Determination of Significance	Projects not covered as a Type II Action (Note a project can not be segmented all phases/tasks must be considered in the review)	Most projects or activities proposed by a state agency, and all discretionary approvals (permits) from a NYS agency or local government, require an environmental impact assessment. SEQR requires the sponsoring or approving governmental body to identify and mitigate the significant environmental impacts of the activity it is proposing or permitting.			
NYSDOS	State Coastal Management Program Mapped Coastal Area Boundary	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coastal Zone; and consistency with Local Waterfront Revitalization Plans (LWRPs); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)			
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies	\$13,200	\$49,000

NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400
NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$69,000
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee $=\$ 25$ plus \$2,000,000 additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)		
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	 Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2 -yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000
REGIONAL							
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$76,000

LOCALIMUNICIPA							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000
Town, City or Village	Variable	Building Permits	New Structures			\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000
						Minimum	Maximum
		ENVIRONMENTAL LICENSING \& PERMITTING COST (EXCLUDING MITIGATION)			PROJECT T006 TOTAL	\$775,560	\$3,841,450
Excluded cost: Mitigation or restoration for impact to regulated wetlands; agricultural land and tree clearing					Expected Value	\$2,308,505	

Client: NYISO
Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T006-North American Transmission

SUBSTATION ENGINEERING
COMPANY
ENVIRONMENTAL MITIGATION ESTIMATE

	Offsite Wetland Mitigation*		Farmland**	
	Min.	Max.	Min.	Max.
Area	39 acres	39 acres	16 acres	32 acres
Cost/Acre	$\$ 60,000$	$\$ 120,000$	$\$ 503$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$
Total	$\$ 2,340,000$	$\$ 14,040,000$	$\$ 8,048$	$\$ 16,096$

T006 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\mathbf{\$ 2 , 3 4 8 , 0 4 8}$	$\$ 14,056,096$	$\mathbf{\$ 8 , 2 0 2 , 0 7 2}$

*Offsite wetland mitigation area assumes clearing of NWI Forested/Shrub Wetland Approx. 3.24 miles (17107 IF) by 100 ' ROW width; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in nonforested wetlands; costing includes design and installation costs only; does not include land acquisition or long term monitoring
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 5.28 miles (27878 LF) Adjacent to Agriculture Properties by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T006-North American Transmission

REAL ESTATE ESTIMATE

COUNTY:	ERIE
DEVELOPER:	NORTH AMERICAN (TOO6)
SEGMENT:	DYSINGER - STOLLE SEGMENT
Area (Acres) Total Cost Sub Total 0.68 $\$$$\| 4,376.00$	

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
STATION ENGINEERING
COMPAN
REAL ESTATE ESTIMATE
(INCUMBENT UTILITY ROW)

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T006-North American Transmission

```
COUNTY:
DEVELOPER:
```

NIAGARA
NORTH AMERICAN (T006)
DYSINGER SWITCHYARD

		Total Cost
	Total Cost of Proposed Substation Site	$\$ 152,750.00$

Project: Western Transmission Project Evaluation

Revision: 4
a) Cost Estimate is based on 2017 rates.
b) Construction schedule is in accordance with the Developers proposed schedule (10 months) - we have assumed continuous working with no breaks in the schedule. Six months have been added to the construction schedule for start up and close out works and assisting in pre-construction activities (i.e. permitting activites, material procurement etc.).
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6×10 hour days).
e) We have assumed that the Access Road included in Developer Estimate will be Type 1 Gravel Type.
f) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies.
g) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes.
h) Estimated quantities have been used for items in red text in Section 1 of the Estimate (CLEARING \& ACCESS FOR T-LINE CONSTRUCTION). These items were not quantified in the Developers Estimate, however we believe that they are necessary for the works.
i) Foundation rates include supply and installation of materials. Drilled Pier rates include supply and testing of concrete, rebar cage and the use of temp or permanent casing.
j) A Contractor Mark-Up (OH\&P) of 15\% has been included in the Total section.
k) Assumes all environmental data and project details provided are accurate unless noted otherwise.
l) USFWS T\&E Assumes that $1 / 4$ of the total line in ROW per segment will require field survey for T\&E (5 miles).
m) NEPA-Assumes no NEPA because Art VII.
n) SHPO-Assumes consultation and Phase 1A/1B archeological studies with field survey for 50% of project route (10 miles).
o) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII.
p) Assumes no coordination with National Parks Service or OPRHP/State Parks.
q) USACE wetland delineation total based on Line Miles in Wetlands - NWI wetland length of 3.34 mile.
r) DEC wetland delineation total based on Line Miles in Wetlands - DEC wetland length of 1.19 miles.
s) Offsite wetland mitigation area costs based on impacts anticipated by clearing of NWI Forested/Shrub Wetland of approximately 3.24 miles (calculated by GEI based on NWI mapper legend categories). Assumes clearing an additional 100 feet within Right of Way. Minimum costs at $\$ 60,000 / a c r e$, maximum costs at $\$ 120,000 /$ acre for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring.
t) Agricultural mitigation assumes timber matting impacts and pad impacts on adjacent agriculture land (5.28 miles) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25 -foot-wide impact, Maximum assumes 50 -foot-wide impact.
u)Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.).
v) No tree survey or replanting required outside regulated wetlands areas.
w) Article VII Intervenor Fund payment expected to be $\$ 100,000$.
x) SUF pricing includes 35% to cover Contractor markup (15\%) and contingency (20\%)
y) SUF reconductor rate is based on Niagara-Packard (National Grid) reconductor estimate, pro-rated to a rate / mile. Note that this is based on conductor, shieldwire and hardware pricing only and does not include structure or foundation works.
z) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

ATTACHMENT B2

T007 - NORTH AMERICAN TRANSMISSION

SUMMARY OF COST ESTIMATE

Description		Total Amount	
1	CLEARING \& ACCESS FOR TRANSMISSION LINE CONSTRUCTION	\$	18,262,638
2	TRANSMISSION LINE FOUNDATIONS	\$	21,747,379
3	STRUCTURES - TRANSMISSION LINE	\$	27,076,848
4	CONDUCTOR, SHIELDWIRE, OPGW	\$	8,522,568
5	TRANSMISSION LINE INSULATOR, FITTINGS, HARDWARE	\$	2,536,564
6	NEW DYSINGER SWITCHYARD	\$	19,771,000
7	STOLLE ROAD SUBSTATION WORKS	\$	7,548,000
8	GARDENVILLE 345/230kV SUBSTATION WORKS	\$	12,822,500
9	MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS	\$	53,282,851
	CONTRACTOR MARK-UP (OH\&P) 15\%	\$	25,735,552
	SUBTOTAL:	\$	197,305,901
	CONTINGENCY (25\%)	\$	49,326,475
	TOTAL (A):	\$	246,632,376
10	SYSTEM UPGRADE FACILITIES	\$	23,258,025
	CONTRACTOR MARKUP \& CONTINGENCY (35\%)	\$	8,140,309
	TOTAL (B):	\$	31,398,334
	TOTAL PROJECT COST ($\mathrm{A}+\mathrm{B}$):	\$	278,030,710

Description of Work: Proposal 1 - A new 345kV Dysinger Switchyard located approximately 8 miles southeast of the city of Lockport, New York. The Project also includes a new ~20 mile $\mathbf{3 4 5 k V}$ Transmission Line from Dysinger Switchyard to Stolle Road Substation near Marilla, New York. Proposal 2 - Includes Proposal 1 Scope of Work, with the addition of a single circuit 345kV Transmission Line from the Stolle Road $\mathbf{3 4 5 k V}$ Substation to the existing Gardenville Substation, and a new 345/230kV Transformer at the existing Gardenville Substation. This cost estimate uses Option 1 routing (as per NAT estimate).

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
3.15	Large Angle DE (Ht. 195')	3.0	pole	\$	169,360	\$	101,616	\$	270,976	\$	812,929	
3.16	Tangent DE (Ht. 195')	3.0	pole	\$	116,824	\$	70,094	\$	186,918	\$	560,753	
3.17	Install Grounding	246.0	Structure			\$	5,000	\$	5,000	\$	1,230,000	
TOTAL - STRUCTURES TRANSMISSION LINE:										\$	27,076,848	
4. CONDUCTOR, SHIELDWIRE, OPGW												
4.1	(2)/Phase - $795 \mathrm{kcmil} 26 / 7$ Stranded "Drake" ACSR	32.8	Circuit Mile	\$	53,856	\$	158,400	\$	212,256	\$	6,964,864	
4.2	(1) OPGW 36 Fiber AC-33/38/571	32.8	Mile	\$	19,404	\$	27,720	\$	47,124	\$	1,546,304	
4.3	(1) 3/8" HS Steel (2nd SW where required)	2,000.0	Ft	\$	1	\$	5	\$	6	\$	11,400	
TOTAL: CONDUCTOR, SHIELDWIRE, OPGW:										\$	8,522,568	
5. TRANSMISSION LINE INSULATOR, FITTINGS, HARDWARE												
5.1	Tangent - Polymer V-String	516.0	Set	\$	900	\$	720	\$	1,620	\$	835,920	
5.2	Angle - Polymer V-String	33.0	Set	\$	1,300	\$	1,040	\$	2,340	\$	77,220	
5.3	Deadend - Polymer Double Deadend including Jumper	354.0	Set	\$	1,500	\$	1,350	\$	2,850	\$	1,008,900	
5.4	OPGW Assembly - Tangent	172.0	Set	\$	200	\$	150	\$	350	\$	60,200	
5.5	OPGW Assembly - Angle / DE	148.0	Set	\$	250	\$	150	\$	400	\$	59,200	
5.6	OHSW Assembly - Angle / DE	8.0	Set	\$	250	\$	150	\$	400	\$	3,200	
5.7	OPGW Splice Boxes	15.0	Set	\$	1,500	\$	1,000	\$	2,500	\$	37,500	
5.8	OPGW Splice \& Test	1.0	Sum			\$	18,000	\$	18,000	\$	18,000	
5.9	Spacer Dampers	2,952.0	Ea	\$	50	\$	35	\$	85	\$	250,920	
5.10	Vibration Dampers - Conductor	2,952.0	Ea	\$	32	\$	20	\$	52	\$	153,504	
5.11	Shieldwire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	20,000	\$	12,000	\$	32,000	\$	32,000	
TOTAL: TRANSMISSION LINE INSULATORS, FITTINGS, HARDWARE:										\$	2,536,564	
6. NEW DYSINGER SWITCHYARD												
6.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.0	Sum			\$	1,500,000	\$	1,500,000	\$	1,500,000	Supply \& Install
6.2	Substation Fence	2,450.0	LF			\$	200	\$	200	\$	490,000	Supply \& Install
6.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
6.4	Switches 3ph	16.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	112,000	
6.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
6.6	Line Switches 3 ph	5.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	150,000	
6.7	Instrument Transformers	1.0	Sum			\$	1,046,000	\$	1,046,000	\$	1,046,000	
6.8	Breakers	8.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	3,040,000	
6.9	Arrestors (3 per line)	15.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	112,500	
6.10	Line Traps	5.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	105,000	
6.11	Two (2) 345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000	
6.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	Supply \& Install
6.13	Low Profile Foundations	231.0	Ea			\$	5,000	\$	5,000	\$	1,155,000	Supply \& Install
6.14	Caisson DE Foundations	20.0	Ea			\$	50,000	\$	50,000	\$	1,000,000	Supply \& Install
6.15	Circuit Breaker Foundations	8.0	Ea			\$	75,000	\$	75,000	\$	600,000	Supply \& Install
6.16	Lightning Mast Foundations	15.0	Ea			\$	15,000	\$	15,000	\$	225,000	Supply \& Install
6.17	SST Foundation	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	
6.18	Control House and Pad ($30^{\prime} \times 90^{\prime}$)	1.0	Sum	\$	650,000	\$	200,000	\$	850,000	\$	850,000	Supply \& Install
6.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	
6.20	Control Cables	1.0	Sum	\$	100,000	\$	100,000	\$	200,000	\$	200,000	
6.21	125VDC Batteries	2.0	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
6.22	Station Services	2.0	Ea			\$	25,000	\$	25,000	\$	50,000	Supply \& Install
6.23	Protection, Telecom and Metering Equipment (Panels)	30.0	Ea			\$	30,000	\$	30,000	\$	900,000	Supply \& Install
6.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install

Quantity	Unit		ly Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
1.0	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
1.0	Sum			\$	250,000	\$	250,000	\$	250,000	
93.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	279,000	
16.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	176,000	
1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
1.0	Sum	\$	-	\$	52,000	\$	52,000	\$	52,000	
5.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	125,000	
15.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	180,000	
15.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	52,500	
1.0	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
1.0	Sum			\$	3,400,000	\$	3,400,000	\$	3,400,000	Supply \& Install
								\$	19,771,000	
6.00	Ea	\$	5,000	\$	2,000	\$	7,000	\$	42,000	
2.00	Ea	\$	15,000	\$	15,000	\$	30,000	\$	60,000	
1.00	Sum			\$	544,000	\$	544,000	\$	544,000	
4.00	Ea	\$	300,000	\$	80,000	\$	380,000	\$	1,520,000	
6.00	Ea	\$	6,500	\$	1,000	\$	7,500	\$	45,000	
2.00	Ea	\$	13,000	\$	8,000	\$	21,000	\$	42,000	
1.00	Ea	\$	12,500	\$	17,500	\$	30,000	\$	30,000	Supply \& Install
110.00	Ea			\$	5,000	\$	5,000	\$	550,000	Supply \& Install
4.00	Ea			\$	50,000	\$	50,000	\$	200,000	Supply \& Install
4.00	Ea			\$	75,000	\$	75,000	\$	300,000	Supply \& Install
4.0	Ea			\$	15,000	\$	15,000	\$	60,000	
1.00	Sum	\$	100,000	\$	100,000	\$	200,000	\$	200,000	Supply \& Install
16.00	Ea			\$	30,000	\$	30,000	\$	480,000	Supply \& Install
1.00	Sum			\$	125,000	\$	125,000	\$	125,000	Supply \& Install
1.00	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
1.00	Sum			\$	750,000	\$	750,000	\$	750,000	
1.00	Sum			\$	250,000	\$	250,000	\$	250,000	
54.00	Ea	\$	2,000	\$	1,000	\$	3,000	\$	162,000	
6.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	66,000	
1.00	Sum			\$	28,000	\$	28,000	\$	28,000	
1.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	25,000	
4.00	Ea	\$	10,000	\$	2,000	\$	12,000	\$	48,000	
6.0	Ea	\$	2,500	\$	1,000	\$	3,500	+	21,000	
1.00	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
1.0	Sum			\$	1,000,000	\$	1,000,000	5	1,000,000	Supply \& Install
								\$	7,548,000	
1.0	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
1,400.0	LF			\$	200	\$	200	\$	280,000	Supply \& Install
1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
1.0	Ea	5	5,000	\$	2,000	\$	7,000	\$	7,000	
3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
1.0	Sum			\$	271,000	\$	271,000	\$	271,000	
1.0	Ea	\$	250,000	\$	75,000	\$	325,000	\$	325,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
8.9	Arrestors (3 per line)	12.0	Ea	\$ 6,500	\$	1,000	\$	7,500	\$	90,000	
8.10	Line Traps	1.0	Ea	\$ 13,000	\$	8,000	\$	21,000	\$	21,000	
8.11	230 kV buses	1.0	Ea	\$ 25,000	\$	35,000	\$	60,000	\$	60,000	
8.12	Auxillary Power Generator - 500kW	1.0	Ea	\$ 160,000	\$	40,000	\$	200,000	\$	200,000	
8.13	Low Profile Foundations	40.0	Ea		\$	5,000	\$	5,000	\$	200,000	Supply \& Install
8.14	Caisson DE Foundations	12.0	Ea		\$	50,000	\$	50,000	\$	600,000	Supply \& Install
8.15	Circuit Breaker Foundations	1.0	Ea		\$	75,000	\$	75,000	\$	75,000	Supply \& Install
8.16	Lightning Mast Foundations	1.0	Ea		\$	15,000	\$	15,000	\$	15,000	Supply \& Install
8.17	SST Foundation	1.0	Ea		\$	75,000	\$	75,000	\$	75,000	Supply \& Install
8.18	Control House and Pad (14' $\times 70$ ' - 980 sq. ft)	1.0	Ea	\$ 350,000	\$	100,000	\$	450,000	\$	450,000	
8.19	Generator Foundation	1.0	Sum		\$	25,000	\$	25,000	\$	25,000	Supply \& Install
8.20	Control Cables	1.0	Sum	\$ 100,000	\$	100,000	\$	200,000	\$	200,000	
8.21	125VDC Batteries	2.0	Ea	\$ 50,000	\$	50,000	\$	100,000	\$	200,000	
8.22	Station Services	2.0	Ea		\$	25,000	\$	25,000	\$	50,000	
8.23	Protection, Telecom and Metering Equipment (Panels)	11.0	Ea		\$	30,000	\$	30,000	\$	330,000	Supply \& Install
8.24	SCADA and Communications	1.0	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
8.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum		\$	500,000	\$	500,000	\$	500,000	Supply \& Install
8.26	Control Conduits from Cable Tray to Equipment	1.0	Sum		\$	357,500	\$	357,500	\$	357,500	Supply \& Install
8.27	Cable Trench Systems for Control Cables	1.0	Sum		\$	350,000	\$	350,000	\$	350,000	Supply \& Install
8.28	Grounding	1.0	Sum		\$	125,000	\$	125,000	\$	125,000	Supply \& Install
8.29	Bus Support 1 Ph	18.0	Ea	\$ 2,000	\$	1,000	\$	3,000	\$	54,000	
8.30	Switch Stands	1.0	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	11,000	
8.31	Fuse Stand	1.0	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	11,000	
8.32	Misc. Structures	1.0	Sum		\$	27,000	\$	27,000	\$	27,000	
8.33	Substation A-Frame Structures Standalone	3.0	Ea	\$ 20,000	\$	5,000	\$	25,000	\$	75,000	
8.34	Lightning Masts	1.0	Ea	\$ 10,000	\$	2,000	\$	12,000	\$	12,000	
8.35	Arrestor Stands	6.0	Ea	\$ 2,500	\$	1,000	\$	3,500	\$	21,000	
8.36	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		\$	725,000	\$	725,000	\$	725,000	Supply \& Install
8.37	345 kV - 230kV 480/540/600 MVA Transformer	1.0	Ea	\$ 4,750,000	\$	750,000	\$	5,500,000	\$	5,500,000	
8.38	Transformer Foundation with concrete moat and double steel grating	1.0	Ea		\$	150,000	\$	150,000	\$	150,000	Supply \& Install
TOTAL -	GARDENVILLE SUBSTATION WORKS:								\$	12,822,500	
9. MOB/	DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:										
	Contractor Mobilization / Demobilization										
9.1	Mob / Demob	1.0	Sum		\$	1,200,000	\$	1,200,000	\$	1,200,000	
	Project Management, Material Handling \& Amenities						\$	-	\$	-	
9.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision,	24.0	Months		\$	375,000	\$	375,000	\$	9,000,000	
9.3	Site Accommodation, Facilities, Storage	1.0	Sum		\$	2,000,000	\$	2,000,000	\$	2,000,000	
	Engineering						\$	-	\$	-	
9.4	Design Engineering	1.0	Sum		\$	6,600,000	\$	6,600,000	\$	6,600,000	
9.5	Lidar	1.0	Sum		\$	600,000	\$	600,000	\$	600,000	
9.6	Geotech	1.0	Sum		\$	1,100,000	\$	1,100,000	\$	1,100,000	
9.7	Surveying/Staking	1.0	Sum		\$	450,000	\$	450,000	\$	450,000	
	Testing \& Commissioning						\$	-	\$	-	
9.8	Testing \& Commissioning of TRANSMISSION LINE and Equipment	1.0	Sum		\$	1,500,000	\$	1,500,000	\$	1,500,000	
	Permitting and Additional Costs						\$	-	\$	-	
9.9	Environmental Licensing \& Permitting Costs	1.0	Sum		\$	3,120,534	\$	3,120,534	\$	3,120,534	
9.10	Environmental Mitigation	1.0	Sum		\$	9,884,084	\$	9,884,084	\$	9,884,084	
9.11	Warranties / LOC's	1.0	Sum		\$	738,968	\$	738,968	\$	738,968	
9.12	Real Estate Costs (New ROW)	1.0	Sum		\$	7,623,974	\$	7,623,974	\$	7,623,974	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate:		TAL:	Remarks
SUF 5.6	Misc Above Ground Works	1.0	Sum		900,000	900,000	\$	900,000	
SUF 5.7	Engineering, T\&C, PM, Indirects for SUF 5 (15\%)					\$ -	\$	1,341,000	Assumed 15\% to cover all misc costs
SUF 6	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)						\$	3,750,000	Contingency for possible additional SUF upgrades
TOTAL - SYSTEM UPGRADE FACILITIES:							\$	23,258,025	

Revision: 4

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T007	
FEDERAL						Proposal 2	
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan	\$26,600	\$89,000
National Park Service	National Parks	Consultation; Special Use Permit	Only applies if National Park located in project area.	Depending on impact of project request for a special use permit may require a NEPA environmental assessment.			
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$43,600	\$125,600
NEPA	National Environmental Policy Act	Categorical Exclusion; EA Finding of No Impact; or EIS Record of Decision	With some exemptions, projects on federally owned lands and/or projects requiring federal permit approvals	Possible NEPA review due if federal agency coordination is required. Federal agency involved to determine if Categorical Exclusion applies. Assumes Article 7 covers NEPA requirements or if an EIS is required it is prepared under SEQRA Task.			
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)	\$3,000	\$9,000
STATE							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Intervenor Fund payment expected to be $\$ 100,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans	\$600,000	\$3,100,000

Revision: 4

NYS Public Service Commission / Department of Public Service (NYSDPS)	Part 102		Construction of a utility overhead transmission facility that will convey electric energy at 65 kV or higher for a distance of one mile or longer and are not subject to Article VII of the Public Service Law.	Report may include coordination or studies completed under other line items including: Visual assessment, SHPO determination, OPRHP consultation, Ecological Impacts Assessment Submit to the Commission for 60-day notice period: if no response for a formal investigation project can proceed, if formal investigation ordered project modification may be required	Advantage-Disadvantage Analysis		
NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan		
NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)		
Any State or local government agency that issues permits or approvals	State Environmental Quality Review Act (SEQRA)	Environmental Assessment (EA) Determination of Significance	Projects not covered as a Type II Action (Note a project can not be segmented all phases/tasks must be considered in the review)	Most projects or activities proposed by a state agency, and all discretionary approvals (permits) from a NYS agency or local government, require an environmental impact assessment. SEQR requires the sponsoring or approving governmental body to identify and mitigate the significant environmental impacts of the activity it is proposing or permitting.			
NYSDOS	State Coastal Management Program Mapped Coastal Area Boundary	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coastal Zone; and consistency with Local Waterfront Revitalization Plans (LWRPs); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)			
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies	\$19,510	\$67,930

NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400
NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$200,000
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee = \$25 plus \$2,000,000 additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)		
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2 -yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000
REGIONAL							
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$200,000
LOCAL/MUNICIPAL							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000
Town, City or Village	Variable	Building Permits	New Structures	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways			\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000

			Minimum	Maximum
	ENVIRONMENTAL LICENSING \& PERMITTING COST (EXCLUDING MITIGATION)	PROJECT T007 TOTAL	\$806,350	\$4,186,505
ENVIRONMENTAL LICENSING \& PERNITTNG COST (EXCLUDING MITIGATION)		Expected Value	\$3,120,534.38	

Client: NYISO
Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T007 - North American Transmission

SUBSTATION ENGINEERING
COMPAN Y
ENVIRONMENTAL MITIGATION ESTIMATE

	Offsite Wetland Mitigation*		Farmland**	
	Min.	Max.	Min.	Max.
Area	47 acres	47 acres	18.7 acres	37.3 acres
Cost/Acre	$\$ 60,000$	$\$ 120,000$	$\$ 003$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$
Total	$\$ 2,820,000$	$\$ 16,920,000$	$\$ 9,406$	$\$ 18,762$

TOO7 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\$ 2,829,406$	$\$ 16,938,762$	$\$ 9,884,084$

*Offsite wetland mitigation area assumes Highway Alternative Route; clearing of NWI Forested/Shrub Wetland Approx. 3.88 miles (20486 LF) by 100' ROW width; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in non-forested wetlands; costing includes design and installation costs only; does not include land acquisition or long term monitoring **Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 6.16 miles (32525 LF) Adjacent to Agriculture Properties by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T007-North American Transmission

REAL ESTATE ESTIMATE

COUNTY:	ERIE
DEVELOPER:	NORTH AMERICAN (TO07)
SEGMENT:	DYSINGER - STOLLE SEGMENT
Area (Acres) Total Cost Sub Total 0.68 $\$$ 4,376.00	

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T007-North American Transmission

COUNTY:
DEVELOPER:
SEGMENT:

ERIE
NORTH AMERICAN (T007)
STOLLE TO GARDENVILLE SEGMENT

		Area (Acres)	Total Cost
	Total	167.00	$\$ 6,838,497.00$

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T007 - North American Transmission

REAL ESTATE ESTIMATE

COUNTY:
DEVELOPER:
SEGMENT:

NIAGARA \& ERIE
NORTH AMERICAN (T007)
DYSINGER - STOLLE - GARDENVILLE SEGMENT

	DEVELOPER	SEGMENT	COUNTY	INCUMBENT UTILITY (ROW) (ACRES)	TOTAL ROW COST
T007	North American Transmission (Proposal 2)	Dysinger SS to Stolle Rd SS - 19.98 miles	Niagara	5.74	1,640,000
			Erie	296.31	
		Stolle Rd SS to Gardenville SS - 12.84 miles	Erie	27.55	

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T007-North American Transmission
REAL ESTATE ESTIMATE
(HOUSES)

COUNTY:	ERIE		
DEVELOPER:	NORTH AMERICAN (TOO7)		
SEGMENT:	STOLLE ROAD TO GARDENVILLE		
		Total Valuation of Property with 3% Escalation/year (as of 2017)	
	Total Valuation Cost	$\$$	$628,349.85$

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T007-North American Transmission
REAL ESTATE ESTIMATE

COUNTY:	NIAGARA
DEVELOPER:	NORTH AMERICAN (T007)
SEGMENT:	DYSINGER SWITCHYARD
Total Cost Total Cost of Proposed Substation Site $\$ 152,750.00$	

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T007-North American Transmission
REAL ESTATE ESTIMATE
COUNTY:
DEVELOPER:

l	ERIE		
SEGMENT:	NORTH AMERICAN (T007)		
		GARDENVILLE SUBSTATION (OPTION 1)	
		Total Cost	
	Total Cost of Proposed Substation Site	$\$$	

Revision: 4

a) Cost Estimate is based on 2017 rates.

b) Construction schedule is in accordance with the Developers proposed schedule (approx 12 months) - we have assumed continuous working with no breaks in the schedule. Six months added to construction schedule for PM time for start up and close out works and float.
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6×10 hour days).
e) We have assumed the Access Road included in Developer Estimate will be Type 1 Gravel Type.
f) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies.
g) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes.
h) Estimated quantities have been used for items in red text in Section 1 of the Estimate (CLEARING \& ACCESS FOR T-LINE CONSTRUCTION). These items were not quantified in the Developers Estimate, however we believe that they are necessary for the works.
i) Foundation rates include supply and installation of materials. Drilled Pier rates include supply and testing of concrete, rebar cage and the use of temp or permanent casing
j) A Contractor Mark-Up (OH\&P) of 15\% has been included in the Total section.
k)Assumes all environmental data and project details provided are accurate unless noted otherwise.
I) USFWS T\&E Assumes that $1 / 4$ of the total line in ROW per proposal will require field survey for T\&E (Approximately 32.6 miles).
m)NEPA-Assumes no NEPA because Art VII.
n) SHPO-Assumes consultation and Phase 1A/1B archeological studies with field survey for 50\% of project route (Approx. 16.31 miles).
o) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII or SEQRA review. Max costs includes additional agency coordination (greater than general fixed costing max.) for new ROW Parallel to Highway.
p) Railroad - Max costs includes additional agency coordination (greater than general fixed costing max.) for new ROW Parallel to Railroad.
q) Assumes no coordination with National Parks Service or OPRHP/State Parks.
r) USACE wetland delineation total based on Line Miles in Wetlands - NWI wetland lengths of 3.91 miles (Min.) and 4.01 miles (Max.).
s) DEC wetland delineation total based on Line Miles in Wetlands - DEC wetland lengths of 2.06 miles (Min.) and 2.61 miles (Max.).
t) Offsite wetland mitigation area costs based on impacts anticipated by clearing of NWI Forested/Shrub Wetland of approximately 3.88 miles using the Stolle Road to Gardenville Highway alternative (calculated by GEI based on NWI mapper legend categories). Assumes clearing an additional 100 feet within Right of Way. Minimum costs at $\$ 60,000 /$ acre, maximum costs at $\$ 120,000 /$ acre for additional permanent impacts of proposed structures in nonforested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring.

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T007-North American Transmission

Revision: 4

u) Agricultural mitigation assumes timber matting impacts and pad impacts on adjacent agriculture land (6.16 miles) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25 -foot-wide impact, Maximum assumes 50 -foot-
v) No tree survey or replanting required outside regulated wetlands areas.
w) Article VII Intervenor Fund payment expected to be $\$ 100,000$.
x) Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.)
y) Expected value of environmental licensing and permitting cost is estimated to be 25% higher than the mean of the range based upon the addition of the new Gardenville to Stolle 345 kV line.
z) NAT did not provide estimates from Options 2 and 3 (for connection to Gardenville). Our estimate only includes Option 1.
aa) SUF pricing includes 35% to cover Contractor markup (15\%) and contingency (20\%)
ab) SUF reconductor rate is based on Niagara-Packard (National Grid) reconductor estimate, pro-rated to a rate / mile. Note that this is based on conductor, shieldwire and hardware pricing only and does not include structure or foundation works.
ac) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

ATTACHMENT B3

T008 - NORTH AMERICAN TRANSMISSION

Description of Work: Proposal 1 - A new 345kV Dysinger Switchyard located approximately 8 miles southeast of the city of Lockport, New York. The Project also includes a new ~20 mile $\mathbf{3 4 5 k V}$ Transmission Line from Dysinger

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
1. CLEARING \& ACCESS FOR T-LINE CONSTRUCTION											
1.1	Clearing the ROW (mowing \& clearing)	350.00	Acre		\$	15,000	\$	15,000	\$	5,250,000	
1.2	Access Road	104,060.30	LF		\$	45	S	45	\$	4,682,713	Assumes Type 1 Type Gravel Road
1.3	Silt Fence	104,060.30	LF		\$	4	S	4	\$	416,241	
1.4	Matting	84,695.00	LF		\$	70	\$	70	\$	5,928,650	
1.5	Snow Removal	1.00	Sum		\$	825,000	\$	825,000	\$	825,000	
1.6	ROW Restoration	52.79	Mile		\$	10,000	\$	10,000	\$	527,921	
1.7	Work Pads	1,040,625.00	SF		\$	4	\$	4	\$	3,663,000	
1.8	Restoration for Work Pad areas	104,062.50	SF		\$	0.2	\$	0.2	\$	15,609	
1.9	Temporary Access Bridge	30.0	EA		\$	20,035	\$	20,035	\$	601,050	
1.10	Air Bridge	8.0	EA		\$	14,445	\$	14,445	\$	115,560	
1.11	Stabilized Construction Entrance	15.0	EA		\$	4,580	\$	4,580	\$	68,700	
1.12	Maintenance and Protection of Traffic on Public Roads	1.0	LS		\$	500,000	\$	500,000	\$	500,000	
1.13	Culverts / Misc. Access	1.0	LS		\$	150,000	\$	150,000	\$	150,000	
1.14	Concrete Washout Station	15.0	EA		\$	1,850	\$	1,850	\$	27,750	
TOTAL - CLEARING \& ACCESS FOR T-LINE:									\$	22,772,195	
2. T-LINE FOUNDATIONS											
2.1	Direct Embed Foundations - $23 \mathrm{ft} \mathrm{deep} \times 6 \mathrm{ft} \mathrm{dia}$.	263.00	Structure		\$	18,000	\$	18,000	\$	4,734,000	Supply \& Install
2.2	Direct Embed Foundations - 28 ft deep $\times 7 \mathrm{ft}$ dia.	10.00	Structure		\$	20,000	\$	20,000	\$	200,000	Supply \& Install
2.3	Direct Embed Foundations - 30ft deep $\times 6 \mathrm{ft} \mathrm{dia}$.	41.00	Structure		\$	20,000	\$	20,000	\$	820,000	Supply \& Install
2.4	Direct Embed Foundations - 37 ft deep $\times 7 \mathrm{ft}$ dia.	6.00	Structure		\$	22,000	\$	22,000	\$	132,000	Supply \& Install
2.5	Drilled Pier 38ft deep $\times 9$ ft dia.	1,477.41	CUY		\$	1,500	\$	1,500	\$	2,216,115	
2.6	Drilled Pier 45tt deep x 9 ft dia.	349.90	CUY		\$	1,500	\$	1,500	\$	524,849	
2.7	Drilled Pier 47 ft deep $\times 8 \mathrm{ft}$ dia.	1,347.49	CUY		\$	1,500	\$	1,500	\$	2,021,231	
2.8	Drilled Pier 57 tt deep $\times 9$ 9ft dia.	443.20	CUY		\$	1,500	\$	1,500	\$	664,800	
2.9	Drilled Pier 64ft deep $\times 88 \mathrm{ft} \mathrm{dia}$.	393.19	CUY		\$	1,500	\$	1,500	\$	589,782	
2.10	Drilled Pier 71ft deep $\times 9 \mathrm{ft}$ dia.	4,416.45	CUY		\$	1,500	\$	1,500	\$	6,624,676	
2.11	Drilled Pier 43 ft deep $\times 8 \mathrm{ft}$ dia.	1,585.04	CUY		\$	1,500	\$	1,500	\$	2,377,557	
2.12	Rock Excavation Adder	3,756.00	CUY		\$	2,000	\$	2,000	\$	7,512,000	
TOTAL - T-LINE FOUNDATIONS:									\$	28,417,010	
3. STRUCTURES - T-LINE											
3.1	Single Steel Pole Tangent Delta - 00-10 (Ht. 100')	36.00	EA	\$ 31,401	\$	18,841	\$	50,242	\$	1,808,698	
3.2	Single Steel Pole Tangent Delta - 00-10 (Ht. 115')	227.00	EA	\$ 38,376	\$	23,026	\$	61,402	\$	13,938,163	
3.3	Single Steel Pole Tangent Delta - 00-10 (Ht. 130')	34.00	EA	\$ 44,150	\$	26,490	\$	70,641	\$	2,401,782	
3.4	Single Steel Pole Tangent Delta - 00-10 (Ht. 145')	7.00	EA	\$ 50,029	\$	30,018	\$	80,047	\$	560,327	
3.5	Single Steel Pole Small Angle Delta - 10-15 (Ht. 115')	10.00	Pole	\$ 66,881	\$	40,128	\$	107,009	\$	1,070,093	
3.6	Single Steel Pole Small Angle Delta - 10-15 (Ht. 130)	4.00	Pole	\$ 78,872	\$	47,323	\$	126,196	\$	504,783	
3.7	Single Steel Pole Small Angle Delta - 10-15 (Ht. 145)	2.00	Pole	\$ 94,927	\$	56,956	\$	151,883	\$	303,765	
3.8	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 115')	18.00	Pole	\$ 93,524	\$	56,115	\$	149,639	\$	2,693,503	
3.9	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 130')	7.00	Pole	\$ 120,604	\$	72,362	\$	192,966	\$	1,350,760	
3.10	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 145')	7.00	Pole	\$ 153,391	\$	92,034	\$	245,425	\$	1,717,975	
3.11	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 185')	3.00	Pole	\$ 187,828	\$	112,697	\$	300,525	\$	901,575	
3.12	Single Steel Pole Large Angle DE Vertical - 60-90 (Ht. 115')	15.00	Pole	\$ 111,476	\$	66,885	S	178,361	\$	2,675,419	

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks	
3.13	Single Steel Pole Large Angle DE Vertical - $60-90$ (Ht. 130')	16.00	Pole	\$	140,249	S	84,149	\$	224,398	\$	3,590,369		
3.14	Single Steel Pole Large Angle DE Vertical - 60-90 (Ht. 145')	8.00	Pole	\$	177,172	\$	106,303	\$	283,476	\$	2,267,804		
3.15	Large Angle DE (Ht. 195')	3.00	Pole	\$	169,360	\$	101,616	\$	270,976	\$	812,929		
3.16	Tangent DE (Ht. 195')	3.00	Pole	\$	116,824	\$	70,094	\$	186,918	\$	560,753		
3.17	Install Grounding	400.00	Structure			\$	5,000	\$	5,000	\$	2,000,000	Supply \& Install	
TOTAL -	TRUCTURES T-LINE:									\$	39,158,699		
4. CONDUCTOR, SHIELDWIRE, OPGW													
4.1	(2)/Phase - 795 kcmil 26/7 Stranded "Drake" ACSR	52.79	Circuit Mile	\$	53,856	\$	158,400	\$	212,256	\$	11,205,444		
4.2	(1) OPGW 36 Fiber AC-33/38/571	52.79	Mile	\$	19,404	\$	27,720	\$	47,124	\$	2,487,776		
4.3	(1) 3/8" HS Steel (2nd SW where required)	3,000.00	Ft	\$	1	\$	5	\$	6	\$	17,100		
TOTAL: CONDUCTOR, SHIELDWIRE, OPGW:										\$	13,710,320		
5. T-LINE INSULATOR, FITTINGS, HARDWARE													
5.1	Tangent - Polymer V-String	915.00	Set	\$	900	\$	720	\$	1,620	\$	1,482,300		
5.2	Angle - Polymer V-String	48.00	Set	\$	1,300	\$	1,040	\$	2,340	\$	112,320		
5.3	Deadend - Polymer Double Deadend including Jumper	444.00	Set	\$	1,500	\$	1,350	\$	2,850	\$	1,265,400		
5.4	OPGW Assembly - Tangent	305.00	Set	\$	200	\$	150	\$	350	\$	106,750		
5.5	OPGW Assembly - Angle / DE	180.00	Set	\$	250	\$	150	\$	400	\$	72,000		
5.6	OHSW Assembly - Angle / DE	12.00	Set	\$	250	\$	150	\$	400	\$	4,800		
5.7	OPGW Splice Boxes	23.00	Set	\$	1,500	\$	1,000	\$	2,500	\$	57,500		
5.8	OPGW Splice \& Test	1.00	Sum			\$	27,600	\$	27,600	\$	27,600		
5.9	Spacer Dampers	4,752.00	Ea	\$	50	\$	35	\$	85	\$	403,920		
5.10	Vibration Dampers - Conductor	4,752.00	Ea	\$	32	\$	20	\$	52	\$	247,104		
5.11	Shieldwire / OPGW Dampers, Misc Fittings	1.00	Sum	\$	30,000	\$	12,000	\$	42,000	\$	42,000		
TOTAL: T-LINE INSULATORS, FITTINGS, HARDWARE:										\$	3,821,694		
6. NEW DYSINGER SWITCHYARD													
6.1	Site Works including sediment controls, access roads, rough grading, final	1.00	Sum			\$	1,500,000	\$	1,500,000	\$	1,500,000	Supply \& Install	
6.2	Substation Fence	2,450.00	LF			\$	200	\$	200	\$	490,000	Supply \& Install	
6.3	SSVT	1.00	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000		
6.4	Switches 3ph	18.00	Ea	\$	5,000	\$	2,000	\$	7,000	\$	126,000		
6.5	Fuses 1ph	3.00	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000		
6.6	Line Switches 3 ph	6.00	Ea	\$	15,000	\$	15,000	\$	30,000	\$	180,000		
6.7	Instrument Transformers	1.00	Sum			\$	1,130,000	\$	1,130,000	\$	1,130,000		
6.8	Breakers	9.00	Ea	\$	300,000	\$	80,000	\$	380,000	\$	3,420,000		
6.9	Arrestors (3 per line)	18.00	Ea	\$	6,500	\$	1,000	\$	7,500	\$	135,000		
6.10	Line Traps	6.00	Ea	\$	13,000	\$	8,000	\$	21,000	\$	126,000		
6.11	Two (2) 345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000		
6.12	Auxillary Power Generator - 500kW	1.00	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	Supply \& Install	
6.13	Low Profile Foundations	250.00	Ea			5	5,000	\$	5,000	\$	1,250,000	Supply \& Install	
6.14	Caisson DE Foundations	24.00	Ea			\$	50,000	\$	50,000	\$	1,200,000	Supply \& Install	
6.15	Circuit Breaker Foundations	9.00	Ea			\$	75,000	\$	75,000	\$	675,000	Supply \& Install	
6.16	Lightning Mast Foundations	15.00	Ea			\$	15,000	\$	15,000	\$	225,000	Supply \& Install	
6.17	SST Foundation	1.00	Ea			\$	75,000	\$	75,000	\$	75,000		
6.18	Control House and Pad (30' $\times 90^{\prime}$)	1.0	Sum	\$	650,000	\$	200,000	5	850,000	\$	850,000	Supply \& Install	
6.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000		
6.20	Control Cables	1.00	Sum	\$	110,000	\$	110,000	\$	220,000	\$	220,000		
6.21	125VDC Batteries	2.00	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000		
6.22	Station Services	2.00	Ea			\$	25,000	\$	25,000	\$	50,000	Supply \& Install	
6.23	Protection, Telecom and Metering Equipment (Panels)	33.00	Ea			\$	30,000	\$	30,000	\$	990,000	Supply \& Install	

Item	Description	Quantity	Unit	Supply Rate		quipment te		nit Rate:		TAL:	Remarks
6.24	SCADA and Communications	1.00	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	Supply \& Install
6.26	Control Conduits from Cable Tray to Equipment	1.00	Sum		5	250,000	\$	250,000	\$	250,000	Supply \& Install
6.27	Cable Trench Systems for Control Cables	1.00	Sum		\$	750,000	\$	750,000	\$	750,000	Supply \& Install
6.28	Grounding	1.00	Sum		S	250,000	\$	250,000	\$	250,000	
6.29	Bus Support 1 Ph	93.00	Ea	\$ 2,000	\$	1,000	\$	3,000	\$	279,000	
6.30	Switch Stands	18.00	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	198,000	
6.31	Fuse Stand	1.00	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	11,000	
6.32	Misc. Structures	1.0	Sum		\$	60,000	\$	60,000	\$	60,000	
6.33	Substation A-Frame Structures Standalone	6.0	Ea	\$ 20,000	\$	5,000	\$	25,000	\$	150,000	
6.34	Lightning Masts	15.00	Ea	\$ 10,000	\$	2,000	\$	12,000	\$	180,000	
6.35	Arrestor Stands	18.0	Ea	\$ 2,500	S	1,000	\$	3,500	\$	63,000	
6.36	Miscellaneous Materials and Above / Below Ground Works	1.00	Sum		\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
6.37	Connection of Existing Lines to Dysinger Switchyard	1.00	Sum		\$	3,400,000	\$	3,400,000	\$	3,400,000	Supply \& Install
TOTAL	DSINGER SWITCHYARD:								\$	20,868,000	
7. STOLL	ROAD SUBSTATION WORKS:										
7.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.00	Sum		\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
7.2	Substation Fence	715.00	LF		\$	200	\$	200	\$	143,000	Supply \& Install
7.3	Switches 3ph	14.00	Ea	\$ 5,000	\$	2,000	\$	7,000	\$	98,000	
7.4	Line Switches 3 ph w/motor-operators	4.00	Ea	\$ 15,000	\$	15,000	\$	30,000	\$	120,000	
7.5	Instrument Transformers	1.00	Sum		\$	691,000	\$	691,000	\$	691,000	
7.6	Breakers	8.00	Ea	\$ 300,000	\$	80,000	\$	380,000	\$	3,040,000	
7.7	Arrestors (3 per line)	12.00	Ea	\$ 6,500	\$	1,000	\$	7,500	\$	90,000	
7.8	Line Traps	4.00	Ea	\$ 13,000	\$	8,000	\$	21,000	\$	84,000	
7.9	345 kV buses	2.00	Ea	\$ 25,000	S	35,000	\$	60,000	\$	120,000	
7.10	Low Profile Foundations	183.00	Ea		\$	5,000	\$	5,000	\$	915,000	Supply \& Install
7.11	Caisson DE Foundations	16.00	Ea		\$	50,000	\$	50,000	\$	800,000	Supply \& Install
7.12	Circuit Breaker Foundations	8.00	Ea		\$	75,000	\$	75,000	\$	600,000	Supply \& Install
7.13	Lightning Mast Foundations	8.00	Ea		\$	15,000	\$	15,000	\$	120,000	Supply \& Install
7.13	Control House and Pad (25' $\times 50$ ' -1250 sq. ft)	1.00	Ea	\$ 650,000	\$	200,000	\$	850,000	\$	850,000	Supply \& Install
7.14	Control Cables	1.00	Sum	\$ 100,000	\$	100,000	\$	200,000	\$	200,000	
7.14	125VDC Batteries	2.00	Ea	\$ 50,000	S	50,000	\$	100,000	\$	200,000	
7.15	Protection, Telecom and Metering Equipment (Panels)	27.00	Ea		\$	30,000	\$	30,000	\$	810,000	Supply \& Install
7.16	SCADA and Communications	1.00	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
7.16	Low Voltage AC Distribution \& DC Panels \& Switches	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	Supply \& Install
7.17	Control Conduits from Cable Tray to Equipment	1.00	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
7.18	Cable Trench Systems for Control Cables	1.00	Sum		\$	750,000	\$	750,000	\$	750,000	Supply \& Install
7.19	Grounding	1.00	Sum		\$	250,000	\$	250,000	\$	250,000	
7.20	Bus Support 1 Ph	66.00	Ea	\$ 2,000	S	1,000	\$	3,000	\$	198,000	
7.21	Switch Stands	14.00	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	154,000	
7.22	Misc. Structures	1.0	Sum		\$	42,000	\$	42,000	\$	42,000	
7.23	Substation A-Frame Structures Standalone	4.00	Ea	\$ 20,000	\$	5,000	\$	25,000	\$	100,000	
7.24	Lightning Masts	8.0	Ea	\$ 10,000	\$	2,000	\$	12,000	\$	96,000	
7.25	Arrestor Stands	12.0	Ea	\$ 2,500	\$	1,000	\$	3,500	\$	42,000	
7.26	Miscellaneous Materials and Above / Below Ground Works	1.00	Sum		\$	750,000	\$	750,000	\$	750,000	Supply \& Install
7.27	Interconnection arrangement at Stolle Rd Substation	1.0	Sum		\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
TOTAL - STOLLE RD SUBSTATION WORKS:									\$	14,263,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		nit Rate:		TOTAL:	Remarks
8. GARDENVILLE 345/230kV SUBSTATION WORKS										
8.1	Site Works including sediment controls, access roads, rough grading, final	1.0	Sum		\$ 750,000	\$	750,000	\$	750,000	Supply \& Install
8.2	Substation Fence	1,400.0	LF		200	\$	200	\$	280,000	Supply \& Install
8.3	SSVT	1.0	Ea	\$ 200,000	50,000	\$	250,000	\$	250,000	
8.4	Switches 3ph	1.0	Ea	\$ 5,000	2,000	\$	7,000	\$	7,000	Supply \& Install
8.5	Fuses 1ph	3.0	Ea	\$ 15,000	15,000	\$	30,000	\$	90,000	Supply \& Install
8.6	Line Switches 3 ph w/motor-operators	3.0	Ea	\$ 15,000	15,000	\$	30,000	\$	90,000	Supply \& Install
8.7	Instrument Transformers	1.0	Sum		\$ 271,000	\$	271,000	\$	271,000	Supply \& Install
8.8	Breakers	1.0	Ea	\$ 250,000	75,000	\$	325,000	\$	325,000	Supply \& Install
8.9	Arrestors (3 per line)	12.0	Ea	\$ 6,500	1,000	\$	7,500	\$	90,000	
8.10	Line Traps	1.0	Ea	\$ 13,000	8,000	\$	21,000	\$	21,000	
8.11	230 kV buses	1.0	Ea	\$ 25,000	35,000	\$	60,000	\$	60,000	
8.12	Auxillary Power Generator - 500kW	1.0	Ea	\$ 160,000	40,000	\$	200,000	\$	200,000	
8.13	Low Profile Foundations	40.0	Ea		5,000	\$	5,000	\$	200,000	
8.14	Caisson DE Foundations	12.0	Ea		50,000	\$	50,000	\$	600,000	
8.15	Circuit Breaker Foundations	1.0	Ea		75,000	\$	75,000	\$	75,000	
8.16	Lightning Mast Foundations	1.0	Ea		15,000	\$	15,000	\$	15,000	
8.17	SST Foundation	1.0	Ea		\$ 75,000	\$	75,000	\$	75,000	
8.18	Control House and Pad (14'x 70 ' - 980 sq. ft)	1.0	Ea	\$ 350,000	100,000	\$	450,000	\$	450,000	Supply \& Install
8.19	Generator Foundation	1.0	Sum		25,000	\$	25,000	\$	25,000	
8.20	Control Cables	1.0	Sum	\$ 100,000	100,000	\$	200,000	\$	200,000	
8.21	125VDC Batteries	2.0	Ea	\$ 50,000	50,000	\$	100,000	\$	200,000	Supply \& Install
8.22	Station Services	2.0	Ea		25,000	\$	25,000	\$	50,000	
8.23	Protection, Telecom and Metering Equipment (Panels)	11.0	Ea		30,000	\$	30,000	\$	330,000	Supply \& Install
8.24	SCADA and Communications	1.0	Sum		\$ 250,000	\$	250,000	\$	250,000	Supply \& Install
8.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum		500,000	\$	500,000	\$	500,000	Supply \& Install
8.26	Control Conduits from Cable Tray to Equipment	1.0	Sum		357,500	\$	357,500	\$	357,500	Supply \& Install
8.27	Cable Trench Systems for Control Cables	1.0	Sum		350,000	\$	350,000	\$	350,000	Supply \& Install
8.28	Grounding	1.0	Sum		125,000	\$	125,000	\$	125,000	
8.29	Bus Support 1 Ph	18.0	Ea	\$ 2,000	1,000	\$	3,000	\$	54,000	
8.30	Switch Stands	1.0	Ea	\$ 8,000	3,000	\$	11,000	\$	11,000	
8.31	Fuse Stand	1.0	Ea	\$ 8,000	3,000	\$	11,000	\$	11,000	
8.32	Misc. Structures	1.0	Sum		\$ 27,000	\$	27,000	\$	27,000	
8.33	Substation A-Frame Structures Standalone	3.0	Ea	\$ 20,000	5,000	\$	25,000	\$	75,000	
8.34	Lightning Masts	1.0	Ea	\$ 10,000	2,000	\$	12,000	\$	12,000	
8.35	Arrestor Stands	6.0	Ea	\$ 2,500	1,000	\$	3,500	\$	21,000	
8.36	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		\$ 725,000	\$	725,000	\$	725,000	
8.37	345kV - 230kV 480/540/600 MVA Transformer	1.0	Ea	\$ 4,750,000	\$ 750,000	\$	5,500,000	\$	5,500,000	
8.38	Transformer Foundation with concrete moat and double steel grating	1.0	Ea		150,000	\$	150,000	\$	150,000	
TOTAL - GARDENVILLE SUBSTATION WORKS:								\$	12,822,500	
9. MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:										
	Contractor Mobilization / Demobilization									
9.1	Mob / Demob	1.00	Sum		1,500,000	\$	1,500,000	\$	1,500,000	
	Project Management, Material Handling \& Amenities					\$	-	\$	-	
9.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision,	30.00	Months		\$ 400,000	\$	400,000	\$	12,000,000	
9.3	Site Accommodation, Facilities, Storage	1.00	Sum		2,200,000	\$	2,200,000	\$	2,200,000	
	Engineering					\$	-	\$	-	
9.4	Design Engineering	1.00	Sum		\$ 8,400,000	\$	8,400,000	\$	8,400,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
9.5	LidAR	1.00	Sum		\$	600,000	\$	600,000	\$	600,000	
9.6	Geotech	1.00	Sum		\$	1,100,000	\$	1,100,000	\$	1,100,000	
9.7	Surveying/Staking	1.00	Sum		\$	450,000	\$	450,000	\$	450,000	
	Testing \& Commissioning										
9.8	Testing \& Commissioning of T-Line and Equipment	1.00	Sum		\$	2,000,000	\$	2,000,000	\$	2,000,000	
	Permitting and Additional Costs						\$	-	\$	-	
9.9	Environmental Licensing \& Permitting Costs	1.00	Sum		\$	3,608,602	\$	3,608,602	\$	3,608,602	
9.10	Environmental Mitigation	1.00	Sum		\$	16,814,084	\$	16,814,084	\$	16,814,084	
9.11	Warranties / LOC's	1.00	Sum		\$	970,163	\$	970,163	\$	970,163	
9.12	Real Estate Costs (New)	1.00	Sum		\$	7,623,974	\$	7,623,974	\$	7,623,974	
9.13	Real Estate Costs (Incumbent Utility ROW)	1.00	Sum		\$	3,168,924	\$	3,168,924	\$	3,168,924	
9.14	Legal Fees	1.00	Sum		\$	3,000,000	\$	3,000,000	\$	3,000,000	
9.15	Allowance for Funds Used During Construction (AFUDC)	1.00	Sum				\$	-	\$	-	
9.16	Carrying Charges	1.00	Sum				\$	-	\$	-	
9.17	Sales Tax on Materials	1.00	Sum	\$ 6,282,990			\$	6,282,990	\$	6,282,990	
9.18	Fees for permits, including roadway, railroad, building or other local permits	1.00	Sum		\$	200,000	\$	200,000	\$	200,000	
TOTAL - M	MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:								\$	69,918,737	
10. SYSTE	M UPGRADE FACILITIES										
SUF 1.1	Depew to Erie Street 115kV Transmission Line 921. Terminal allowance included. See comments.	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	Relay was replaced and line ratings increased to 124/137/158 (NOR/LTE/STE) resulting ratings are
SUF 1.2	Engineering, T\&C, PM, Indirects for SUF 1.1 (15\%)						\$	-	\$	75,000	below line conductor ratings. Scope is to remove
SUF 2.1	Shawnee to Swann Reconductor	12.00	Mile		\$	400,000	\$	400,000	\$	4,800,000	Rate for reconductor is pro-rated from National
SUF 2.2	Engineering, T\&C, PM, Indirects FOR SUF 2.2 (15\%)						\$	-	\$	720,000	Grid Niagara - Packard reconductor. Note that rate
SUF 3	Roll Rd Substation										
SUF 3.1	Restoration of station stone within existing substation fence. Assume spoil materials disposed of on-site.	1.00	Ea		\$	100,000	\$	100,000	\$	100,000	Supply \& Install
SUF 3.2	Transformer 115-34.5kV 90 MVA	1.00	Ea	700,000	\$	200,000	\$	900,000	\$	900,000	
SUF 3.3	Switches 115kV 3Ph	1.00	Ea	\$ 15,000	\$	12,000	S	27,000	\$	27,000	
SUF 3.4	Switches 35kV 3Ph	1.00	Ea	6,000	\$	4,000	\$	10,000	\$	10,000	
SUF 3.5	Breakers 115kV 1200A	1.00	Ea	150,000	\$	50,000	\$	200,000	\$	200,000	
SUF 3.6	Breakers 35kV 2000A	1.00	Ea	75,000	\$	15,000	\$	90,000	\$	90,000	
SUF 3.7	CVT's 115kV	3.00	Ea	\$ 10,000	\$	8,000	\$	18,000	\$	54,000	
SUF 3.8	Arrestors 115kV	6.00	Ea	\$ 5,000	\$	700	\$	5,700	\$	34,200	
SUF 3.9	Arrestors 35kV (for transformer)	3.00	Ea	\$ 2,500	\$	500	\$	3,000	\$	9,000	
SUF 3.10	Low Profile Foundations	8.00	Ea		\$	5,000	\$	5,000	\$	40,000	Supply \& Install
SUF 3.11	Circuit Breaker Foundation 115kV	1.00	Ea		\$	75,000	\$	75,000	\$	75,000	Supply \& Install
SUF 3.12	Circuit Breaker Foundation 35kV	1.00	Ea		\$	30,000	\$	30,000	\$	30,000	Supply \& Install
SUF 3.13	Transformer Foundation with concrete moat and double steel grating	1.00	Ea		5	150,000	S	150,000	\$	150,000	Supply \& Install
SUF 3.14	Firewall 30 ' long $\times 12$ ' tall $\times 1$ ' thick with footer	1.00	Ea		5	100,000	\$	100,000	\$	100,000	Supply \& Install
SUF 3.15	Control Cables	1.00	Sum		\$	50,000	\$	50,000	\$	50,000	Supply \& Install
SUF 3.16	Protection \& Telecom Equipment	3.00	Ea		\$	30,000	\$	30,000	\$	90,000	
SUF 3.17	SCADA and Communications	1.00	Sum		\$	25,000	\$	25,000	\$	25,000	Supply \& Install
SUF 3.18	Low Voltage AC Distribution	1.00	Sum		\$	30,000	\$	30,000	\$	30,000	Supply \& Install
SUF 3.19	Control Conduits	1.0	Sum		\$	50,000	\$	50,000	\$	50,000	Supply \& Install
SUF 3.20	Grounding	1.0	Sum		\$	25,000	\$	25,000	\$	25,000	Supply \& Install
SUF 3.21	Switch Stand 115kV (reuse 1 existing)	1.0	Ea	\$ 1,500	\$	800	\$	2,300	\$	2,300	
SUF 3.22	CVT Stand	3.0	Ea	\$ 1,000	\$	1,000	\$	2,000	\$	6,000	
SUF 3.23	Arrestor Stand	3.0	Ea	\$ 1,000	\$	1,000	S	2,000	\$	6,000	

Revision: 4

Item	Description	Quantity	Unit	Supply Rate		quipment te		nit Rate:		TAL:	Remarks
SUF 3.24	Misc Materials and Above / Below Ground Works	1.0	Sum		\$	120,000	\$	120,000	\$	120,000	Supply \& Install
SUF 3.25	Engineering, T\&C, PM, Indirects for SUF 3 (15\%)						\$	-	\$	333,525	Assumed 15\% to cover all misc costs
SUF 4.1	Lockport to Shaw 115kV Transmsision Line 102. NAT report indicated:	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	The limiting equipment is not known - scope
SUF 4.2	Engineering, T\&C, PM, Indirects for SUF 4.1 (15\%)						\$	-	\$	75,000	undefined.
SUF 5	Gardenville Circuit Breaker Replacement										
SUF 5.1	Circuit Breaker Foundation	12.0	Ea		\$	75,000	\$	75,000	\$	900,000	Supply \& Install
SUF 5.2	Below Grade Conduit \& Grounding	1.0	Sum		\$	1,200,000	\$	1,200,000	\$	1,200,000	
SUF 5.3	Circuit breaker - 230kV	12.0	Ea	\$ 250,000	\$	75,000	\$	325,000	\$	3,900,000	
SUF 5.4	Switches - 230kV	24.0	Ea	\$ 20,000	\$	15,000	\$	35,000	\$	840,000	
SUF 5.5	Control Cables	1.0	Sum		\$	1,200,000	\$	1,200,000	\$	1,200,000	Supply \& Install
SUF 5.6	Misc Above Ground Works	1.00	Sum		\$	900,000	\$	900,000	\$	900,000	Assumed 15\% to cover all misc costs
SUF 5.7	Engineering, T\&C, PM, Indirects for SUF 5 (15\%)						\$	-	\$	1,341,000	
SUF 6	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)								\$	3,750,000	Contingency for possible additional SUF upgrades
TOTAL - SYSTEM UPGRADE FACILITIES:									\$	23,258,025	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T008	
FEDERAL						Proposal 3	
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan		
						\$41,320	\$116,675
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$43,600	\$125,600
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)	\$3,000	\$9,000
STATE							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Intervenor Fund payment expected to be $\$ 350,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans		
						\$850,000	\$3,350,000

NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan		
						\$25,960	\$83,300
NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)		
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies (not included in costing)	\$19,510	\$67,930
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400
NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$200,000
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2 -yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000

							Revision:
REGIONAL							
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$200,000
LOCAL/MUNICIPAL							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000
Town, City or Village	Variable	Building Permits	New Structures			\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000

			Minimum	Maximum
	ENVIRONMENTAL LICENSING \& PERMITTING COST (EXCLUDING MITIGATION)	PROJECT T008 TOTAL	\$1,076,790	\$4,474,905
ENVIRONMENTAL LICENSING \& PERMITING COST (EXCLUDING MITGATION)		Expected Value	\$3,608,601.75	

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T008 - North American Transmission

WNY TRANSMISSION PROJECT - ENVIRONMENTAL MITIGATION COST ESTIMATE FOR T008

	Offsite Wetland Mitigation*		Farmland**	
	Min.	Max.	Min.	Max.
Area	96 acres	96 acres	18.7 acres	37.3 acres
Cost/Acre	$\$ 50,000$	$\$ 100,000$	$\$ 503$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$
Total	$\$ 4,800,000$	$\$ 28,800,000$	$\$ 9,406$	$\$ 18,762$

TOO8 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\$ 4,809,406$	$\$ 28,818,762$	$\mathbf{\$}$
$\mathbf{1}$	$\mathbf{1 6 , 8 1 4 , 0 8 4}$		

*Offsite wetland mitigation area assumes Highway Alternative Route; clearing of NWI Forested/Shrub Wetland Approx. 0.65 miles (3432 LF) by 100' ROW width and 3.24 miles (17107 LF) by 225' ROW width; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in non-forested wetlands; cost per acre Min. and Max. reduced due to area total over 50 acres; costing includes design and installation costs only; does not include land acquisition or long term monitoring
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU
(production numbers from 2016 USDA NYS Agriculture Overview), area assumes 6.16 miles (32525 LF) Adjacent to Agriculture Properties by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T008-North American Transmission

REAL ESTATE ESTIMATE

(NEW ROW)

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T008-North American Transmission

REAL ESTATE ESTIMATE
COUNTY:

l	ERIE	
DEVELOPER:	NORTH AMERICAN (T008)	
SEGMENT:	STOLLE TO GARDENVILLE SEGMENT	
		Area (Acres)
	Total	167.00

Client: NYISO

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
SUBSTATION ENGINEERING
REAL ESTATE ESTIMATE
COMPAN

COUNTY:
DEVELOPER:
SEGMENT:

NIAGARA \& ERIE
NORTH AMERICAN (T008)
DYSINGER - STOLLE - GARDENVILLE SEGMENT

	DEVELOPER	SEGMENT	COUNTY	\qquad	TOTAL ROW COST
T008	North American Transmission (Proposal 3)	Dysinger SS to Stolle Rd SS - 2×19.98 miles	Niagara	10.33	2,846,000
			Erie	534.58	
		Stolle Rd SS to Gardenville SS - 12.84 miles	Erie	27.55	

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T008-North American Transmission

REAL ESTATE ESTIMATE

COUNTY:

| DEVELOPER: |
| :--- | :--- | :--- |
| SEGMENT: |

		ERIE SORTH AMERICAN (TOO8)
	Total Valuation Cost	Total Valuation of Property with 3\% Escalation/year (as of 2017)

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T008-North American Transmission

REAL ESTATE ESTIMATE

COUNTY:	NIAGARA		
DEVELOPER:	NORTH AMERICAN (TO08)		
SEGMENT:	DYSINGER SWITCHYARD		
		Total Cost	
		$\$ 152,750.00$	

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T008-North American Transmission
REAL ESTATE ESTIMATE

COUNTY:	ERIE
DEVELOPER:	NORTH AMERICAN (T008)
SEGMENT:	STOLLE ROAD SUBSTATION
	Total Cost
Total Cost of Proposed Substation Site	\$19,440.00

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T008-North American Transmission
REAL ESTATE ESTIMATE
COUNTY:
DEVELOPER:

l	ERIE		
SEGMENT:	NORTH AMERICAN (T008)		
		GARDENVILLE SUBSTATION (OPTION 1)	
		Total Cost	
	Total Cost of Proposed Substation Site	$\$$	

a) Cost Estimate is based on 2017 rates.

b) Construction schedule is in accordance with the Developers proposed schedule (approx 15 months) - we have assumed continuous working with no breaks in the schedule. Six months have been added to the construction schedule PM time for start up and close out works and float.
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6×10 hour days).
e) We have assumed the Access Road included in Developer Estimate will be Type 1 Gravel Type.
f) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies.
g) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes.
h) The equipment types listed for Dysinger Substation have been taken from a recently completed 345 kV switchyard project, using current pricing. Gardenville Transformer is assumed to be 250MVA.
i) Estimated quantities have been used for items in red text in Section 1 of the Estimate (CLEARING \& ACCESS FOR T-LINE CONSTRUCTION). These items were not quantified in the Developers Estimate, however we believe that they are necessary for the works.
j) Foundation rates include supply and installation of materials. Drilled Pier rates include supply and testing of concrete, rebar cage and the use of temp k) A Contractor Mark-Up (OH\&P) of 15\% has been included in the Total section.
I) Assumes all environmental data and project details provided are accurate unless noted otherwise.
m) Dysinger to Stolle Road Circuit 2 ROW length (19.85 miles) not included in project route total since parallels already accounted for length of Dysinger
n) USFWS T\&E Assumes that $1 / 4$ of the Total Line in Right of Way will require field survey for T\&E (Approx. 8.16 miles).
o) NEPA-Assumes no NEPA because Art VII.
p) SHPO-Assumes consultation and Phase 1A/1B archeological studies with field survey for 50\% of Total Line in Right of Way (Approx. 16.31 miles).
q) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII or SEQRA review. Max costs includes additional agency coordination (greater than general fixed costing max.) for new ROW Parallel to Highway.
s) Railroad - Max costs includes additional agency coordination (greater than general fixed costing max.) for new ROW Parallel to Railroad.
t) Assumes no coordination with National Parks Service or OPRHP/State Parks
u) USACE wetland delineation total based on Line Miles in Wetlands - NWI wetland lengths of 7.58 miles (Min.) and 7.69 miles (Max.)
v) DEC wetland delineation total based on Line Miles in Wetlands - DEC wetland lengths of 3.49 miles (Min.) and 4.04 miles (Max.)

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T008 - North American Transmission

ASSUMPTIONS AND CLARIFICATIONS

Revision: 4

w) Offsite wetland mitigation area costs based on impacts anticipated by clearing of NWI Forested/Shrub Wetland of approximately 3.88 miles (calculated by GEI based on NWI mapper legend categories). using the Stolle Road to Gardenville Highway alternative. Assumes clearing an additional 125 within the Dysinger to Stolle Road Right of Way (for a total of 225 feet). Minimum costs at $\$ 50,000 /$ acre, maximum costs at $\$ 100,000 /$ acre for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring. Minimum and maximum costs for this proposal assumes a reduced mitigation cost/acre due to size of
x) Agricultural mitigation assumes timber matting impacts and pad impacts on adjacent agriculture land (6.16 miles) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25-foot-wide impact, Maximum assumes 50-foot-
y) No tree survey or replanting required outside regulated wetlands areas.
z) Article VII Intervenor Fund payment expected to be \$350,000.
aa) Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.).
ab) Expected value of environmental licensing and permitting cost is estimated to be 30% higher than the mean of the range based upon the addition of the new Gardenville to Stolle 345 kV line and a second Dysinger to Stolle line.
ac) SUF pricing includes 35% to cover Contractor markup (15\%) and contingency (20\%)
ad) SUF reconductor rate is based on Niagara-Packard (National Grid) reconductor estimate, pro-rated to a rate / mile. Note that this is based on conductor, shieldwire and hardware pricing only and does not include structure or foundation works.
ae) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

ATTACHMENT B4
T009 - NORTH AMERICAN TRANSMISSION

8/11/2017

Description of Work: Proposal 1 - A new 345kV Dysinger Switchyard located approximately 8 miles southeast of the city of Lockport, New York. The Project also includes a new ~20 mile $\mathbf{3 4 5 k V}$ Transmission Line from Dysinger Switchyard to Stolle Road Substation near Marilla, New York. Proposal 2 - Includes Proposal 1 Scope of Work, with the addition of a single circuit 345kV Transmission Line from the Stolle Road 345kV Substation to the existing
 from the Dysinger Switchyard to the existing Stolle Road 345kV Substation. Proposal 4 includes the addition of a $\mathbf{2 7}$ mile 345kV Transmission Line from Niagara to Dysinger Switchyard.

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
1. CLEARING \& ACCESS FOR T-LINE CONSTRUCTION											
1.1	Clearing the ROW (mowing \& clearing)	515.0	Acre		\$	15,000	\$	15,000	S	7,725,000	
1.2	Access Road	197,895.0	LF		\$	45	\$	45	\$	8,905,275	Assumes Type 1 Type Gravel Road
1.3	Silt Fence	197,895.0	LF		\$	4	\$	4	\$	791,580	
1.4	Matting	187,069.0	LF		\$	70	\$	70	\$	13,094,830	
1.5	Snow Removal	1.0	Sum		\$	1,200,000	\$	1,200,000	\$	1,200,000	
1.6	ROW Restoration	80.0	Mile		\$	10,000	\$	10,000	\$	800,000	
1.7	Work Pads	3,650,000.0	SF		\$	4	\$	4	\$	12,848,000	
1.8	Restoration for Work Pad areas	365,000.0	SF		\$	0.2	\$	0.2	\$	54,750	
1.9	Temporary Access Bridge	60.0	EA		\$	20,035	\$	20,035	\$	1,202,100	
1.10	Air Bridge	20.0	EA		\$	14,445	\$	14,445	\$	288,900	
1.11	Stabilized Construction Entrance	34.0	EA		\$	4,580	\$	4,580	\$	155,720	
1.12	Maintenance and Protection of Traffic on Public Roads	1.0	LS		\$	1,200,000	\$	1,200,000	\$	1,200,000	
1.13	Culverts / Misc. Access	1.0	LS		\$	600,000	\$	600,000	\$	600,000	
1.14	Concrete Washout Station	34.0	EA		\$	1,850	\$	1,850	S	62,900	
TOTAL - CLEARING \& ACCESS FOR T-LINE:									\$	48,929,055	
2. T-LINE FOUNDATIONS											
2.1	Direct Embed Foundations - 23 ft deep $\times 6 \mathrm{ft}$ dia.	416.0	Structure		\$	18,000	\$	18,000	\$	7,488,000	Supply \& Install
2.2	Direct Embed Foundations $-28 \mathrm{ft} \mathrm{deep} \times 7 \mathrm{ft}$ dia.	15.0	Structure		\$	20,000	\$	20,000	\$	300,000	Supply \& Install
2.3	Direct Embed Foundations - 30ft deep $\times 6 \mathrm{ft}$ dia.	63.0	Structure		\$	20,000	\$	20,000	\$	1,260,000	Supply \& Install
2.4	Direct Embed Foundations - 37 ft deep $\times 7 \mathrm{ft}$ dia.	8.0	Structure		\$	22,000	\$	22,000	S	176,000	Supply \& Install
2.5	Drilled Pier 38tt deep $\times 9$ ft dia.	1,477.3	CUY		\$	1,500	\$	1,500	\$	2,216,001	
2.6	Drilled Pier 45tt deep $\times 9 \mathrm{ft}$ dia.	699.8	CUY		\$	1,500	\$	1,500	\$	1,049,685	
2.7	Drilled Pier 47 ft deep $\times 8 \mathrm{ft}$ dia.	2,310.0	CUY		\$	1,500	\$	1,500	\$	3,464,967	
2.8	Drilled Pier 57tt deep $\times 9 \mathrm{ft}$ dia.	1,772.8	CUY		\$	1,500	\$	1,500	\$	2,659,201	
2.9	Drilled Pier 64tt deep $\times 8 \mathrm{ft}$ dia.	393.2	CUY		\$	1,500	\$	1,500	\$	589,782	
2.10	Drilled Pier 71ft deep $\times 9 \mathrm{ft}$ dia.	4,416.5	CUY		\$	1,500	\$	1,500	\$	6,624,676	
2.11	Drilled Pier 43 ft deep $\times 8 \mathrm{ft}$ dia.	2,113.4	CUY		\$	1,500	\$	1,500	\$	3,170,076	
2.12	Drilled Pier 48ft deep $\times 9$ 9ft dia.	746.4	CUY		\$	1,500	\$	1,500	\$	1,119,660	
2.13	Rock Excavation Adder	5,163.0	CUY		\$	2,000	\$	2,000	\$	10,326,000	
TOTAL - T-LINE FOUNDATIONS:									\$	40,444,048	
3. STRUCTURES - T-LINE											
3.1	Single Steel Pole Tangent Delta - 00-10 (Ht. 100')	104.0	EA	31,401	\$	18,841	\$	50,242	\$	5,225,126	
3.2	Single Steel Pole Tangent Delta - 00-10 (Ht. 115')	312.0	EA	38,376	\$	23,026	\$	61,402	\$	19,157,299	
3.3	Single Steel Pole Tangent Delta - 00-10 (Ht. 130')	52.0	EA	\$ 44,150	\$	26,490	\$	70,641	\$	3,673,313	
3.4	Single Steel Pole Tangent Delta - 00-10 (Ht. 145')	11.0	EA	\$ 50,029	\$	30,018	\$	80,047	\$	880,514	
3.5	Single Steel Pole Small Angle Delta - 10-15 (Ht. 115')	15.0	pole	66,881	\$	40,128	\$	107,009	\$	1,605,139	
3.6	Single Steel Pole Small Angle Delta - 10-15 (Ht. 130)	5.0	pole	78,872	\$	47,323	\$	126,196	\$	630,979	
3.7	Single Steel Pole Small Angle Delta - 10-15 (Ht. 145)	3.0	pole	94,927	\$	56,956	\$	151,883	\$	455,648	
3.8	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 115')	24.0	pole	\$ 93,524	\$	56,115	\$	149,639	\$	3,591,337	
3.9	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 130')	11.0	pole	\$ 120,604	\$	72,362	\$	192,966	\$	2,122,623	

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
3.10	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 145')	13.0	pole	\$	153,391	\$	92,034	\$	245,425	\$	3,190,524	
3.11	Single Steel Pole Medium Angle Vertical - 15-60 (Ht. 185')	3.0	pole	\$	187,828	\$	112,697	\$	300,525	\$	901,575	
3.12	Single Steel Pole Large Angle DE Vertical - $60-90$ (Ht. 115')	15.0	pole	\$	111,476	\$	66,885	\$	178,361	\$	2,675,419	
3.13	Single Steel Pole Large Angle DE Vertical - $60-90$ (Ht. 130')	16.0	pole	\$	140,249	\$	84,149	\$	224,398	\$	3,590,369	
3.14	Single Steel Pole Large Angle DE Vertical - $60-90$ (Ht. 145')	8.0	pole	\$	177,172	\$	106,303	\$	283,476	\$	2,267,804	
3.15	Large Angle DE - $60-90$ (Ht. 145')	6.0	pole	\$	97,225	\$	58,335	\$	155,560	\$	933,362	
3.16	Large Angle DE -60-90 (Ht. 165')	3.0	pole	\$	105,869	\$	63,521	\$	169,390	\$	508,170	
3.17	Large Angle DE - 60-90 (Ht. 195')	9.0	pole	\$	169,360	\$	101,616	\$	270,976	\$	2,438,787	
3.18	Tangent Dead End (Ht. 165')	3.0	pole	\$	86,818	\$	52,091	\$	138,908	\$	416,724	
3.19	Tangent Dead End (Ht. 195')	3.0	pole	\$	116,824	\$	70,094	\$	186,918	\$	560,753	
3.20	Install Grounding	616.0	Structure			\$	5,000	\$	5,000	\$	3,080,000	
TOTAL - STRUCTURES T-LINE:										\$	57,905,468	
4. CONDUCTOR, SHIELDWIRE, OPGW												
4.1	(2)/Phase - $795 \mathrm{kcmil} 26 / 7$ Stranded "Drake" ACSR	84.2	Circuit Mile	\$	53,856	\$	158,400	\$	212,256	\$	17,874,078	
4.2	(1) OPGW 36 Fiber AC-33/38/571	84.2	Mile	\$	19,404	\$	27,720	\$	47,124	\$	3,968,312	
4.3	(1) 3/8" HS Steel (2nd SW where required)	4,000.0	Ft	\$		\$	5	\$	6	\$	22,800	
TOTAL: CONDUCTOR, SHIELDWIRE, OPGW:										\$	21,865,190	
5. T-LINE INSULATOR, FITTINGS, HARDWARE												
5.1	Tangent - Polymer V-String	1,446.0	Set	\$	900	\$	720	\$	1,620	\$	2,342,520	
5.2	Angle - Polymer V-String	69.0	Set	\$	1,300	\$	1,040	\$	2,340	\$	161,460	
5.3	Deadend - Polymer Double Deadend including Jumper	666.0	Set	\$	1,500	\$	1,350	\$	2,850	\$	1,898,100	
5.4	OPGW Assembly - Tangent	502.0	Set	\$	200	\$	150	\$	350	\$	175,700	
5.5	OPGW Assembly - Angle / DE	222.0	Set	\$	250	\$	150	\$	400	\$	88,800	
5.6	OHSW Assembly - Angle / DE	16.0	Set	\$	250	\$	150	\$	400	\$	6,400	
5.7	OPGW Splice Boxes	34.0	Set	\$	1,500	\$	1,000	\$	2,500	\$	85,000	
5.8	OPGW Splice \& Test	1.0	Sum			\$	40,800	\$	40,800	\$	40,800	
5.9	Spacer Dampers	7,212.0	Ea	\$	50	\$	35	\$	85	\$	613,020	
5.10	Vibration Dampers - Conductor	7,212.0	Ea	\$	32	\$	20	\$	52	\$	375,024	
5.11	Shieldwire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	30,000	\$	12,000	\$	42,000	\$	42,000	
TOTAL: T-LINE INSULATORS, FITTINGS, HARDWARE:										\$	5,828,824	
6. NEW DYSINGER SWITCHYARD												
6.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.0	Sum				\$1,500,000.00	\$	1,500,000	\$	1,500,000	Supply \& Install
6.2	Substation Fence	2,450.0	LF				\$200	\$	200	\$	490,000	Supply \& Install
6.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
6.4	Switches 3ph	22.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	154,000	
6.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
6.6	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor operators	7.0	Ea	\$	15,000		\$15,000.00	\$	30,000	\$	210,000	
6.7	Instrument Transformers	1.0	Sum			\$	1,214,000	\$	1,214,000	\$	1,214,000	
6.8	Breakers	11.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	4,180,000	
6.9	Arrestors (3 per line)	21.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	157,500	
6.10	Line Traps	7.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	147,000	
6.11	345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000	
6.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	Supply \& Install
6.13	Low Profile Foundations	305.0	Ea			\$	5,000	\$	5,000	\$	1,525,000	Supply \& Install
6.14	Caisson DE Foundations	28.0	Ea			\$	50,000	\$	50,000	\$	1,400,000	Supply \& Install
6.15	Circuit Breaker Foundations	11.0	Ea			\$	75,000	\$	75,000	\$	825,000	Supply \& Install

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		tal Unit Rate:		TAL:	Remarks
6.16	Lightning Mast Foundations	20.0	Ea			\$15,000	\$	15,000	\$	300,000	Supply \& Install
6.17	SST Foundation	1.0	Ea		\$	75,000	\$	75,000	\$	75,000	Supply \& Install
6.18	Control House and Pad (30' x 90' - 2700 sq. ft)	1.0	Sum	650,000	\$	200,000	\$	850,000	\$	850,000	
6.19	Generator Foundation	1.0	Ea		\$	25,000	\$	25,000	\$	25,000	Supply \& Install
6.20	Control Cables	1.3	Sum	100,000	\$	100,000	\$	200,000	\$	260,000	
6.21	125VDC Batteries	2.0	Ea	\$ 50,000	\$	50,000	\$	100,000	\$	200,000	
6.22	Station Services	2.0	Ea		\$	25,000	\$	25,000	\$	50,000	Supply \& Install
6.23	Protection, Telecom and Metering Equipment (Panels)	37.0	Ea		\$	30,000	\$	30,000	\$	1,110,000	Supply \& Install
6.24	SCADA and Communications	1.0	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum		\$	500,000	\$	500,000	\$	500,000	Supply \& Install
6.26	Control Conduits from Cable Trench to Equipment	1.3	Sum		\$	250,000	\$	250,000	\$	325,000	Supply \& Install
6.27	Cable Trench Systems for Control Cables	1.3	Sum		\$	750,000	\$	750,000	\$	975,000	Supply \& Install
6.28	Grounding	1.0	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.29	Bus Support 1 Ph	129.0	Ea	2,000	\$	1,000	\$	3,000	\$	387,000	
6.30	Switch Stands	22.0	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	242,000	
6.31	Fuse Stand	1.0	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	11,000	
6.32	Misc. Structures	1.0	Sum		\$	68,000	\$	68,000	\$	68,000	
6.33	Substation A-Frame Structures Standalone	7.0	Ea	20,000	\$	5,000	\$	25,000	\$	175,000	
6.34	Lightning Masts	20.0	Ea	10,000	\$	2,000	\$	12,000	\$	240,000	
6.35	Arrestor Stands	21.0	Ea	2,500	\$	1,000	\$	3,500	\$	73,500	Supply \& Install
6.36	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
6.37	Connection of Existing Lines to Dysinger Switchyard	1.0	Sum		\$	3,400,000	\$	3,400,000	\$	3,400,000	Supply \& Install
TOTAL - DYSINGER SWITCHYARD:									\$	23,229,000	
7. STOLLE ROAD SUBSTATION WORKS:											
7.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.00	Sum		\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
7.2	Substation Fence	715.00	LF		\$	200	\$	200	\$	143,000	Supply \& Install
7.3	Switches 3ph	14.00	Ea	5,000	\$	2,000	\$	7,000	\$	98,000	
7.4	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor-operators	4.00	Ea	15,000	\$	15,000	\$	30,000	\$	120,000	
7.5	Instrument Transformers	1.00	Sum		\$	691,000	\$	691,000	\$	691,000	
7.6	Breakers	8.00	Ea	300,000	\$	80,000	\$	380,000	\$	3,040,000	
7.7	Arrestors (3 per line)	12.00	Ea	6,500	\$	1,000	\$	7,500	\$	90,000	
7.8	Line Traps	4.00	Ea	13,000	\$	8,000	\$	21,000	\$	84,000	
7.9	345 kV buses	2.00	Ea	25,000	\$	35,000	\$	60,000	\$	120,000	
7.10	Low Profile Foundations	183.00	Ea		\$	5,000	\$	5,000	\$	915,000	Supply \& Install
7.11	Caisson DE Foundations	16.00	Ea		\$	50,000	\$	50,000	\$	800,000	Supply \& Install
7.12	Circuit Breaker Foundations	8.00	Ea		\$	75,000	\$	75,000	\$	600,000	Supply \& Install
7.13	Lightning Mast Foundations	8.00	Ea		\$	15,000	\$	15,000	\$	120,000	Supply \& Install
7.14	Control House and Pad (25' $\times 50$ ' 1250 sq. ft)	1.00	Ea	\$ 650,000	\$	200,000	\$	850,000	\$	850,000	
7.15	Control Cables	1.00	Sum	\$ 100,000	\$	100,000	\$	200,000	\$	200,000	
7.16	125VDC Batteries	2.00	Ea	50,000	\$	50,000	\$	100,000	\$	200,000	
7.17	Protection, Telecom and Metering Equipment (Panels)	27.00	Ea		\$	30,000	\$	30,000	\$	810,000	Supply \& Install
7.18	SCADA and Communications	1.00	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
7.19	Low Voltage AC Distribution \& DC Panels \& Switches	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	Supply \& Install
7.20	Control Conduits from Cable Tray to Equipment	1.00	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
7.21	Cable Trench Systems for Control Cables	1.00	Sum		\$	750,000	\$	750,000	\$	750,000	Supply \& Install
7.22	Grounding	1.00	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
7.23	Bus Support 1 Ph	66.00	Ea	\$	2,000	\$	1,000	\$	3,000	\$	198,000	
7.24	Switch Stands	14.00	Ea	\$	8,000	\$	3,000	\$	11,000	\$	154,000	
7.25	Misc. Structures	1.0	Sum			\$	42,000	\$	42,000	\$	42,000	
7.26	Substation A-Frame Structures Standalone	4.00	Ea	\$	20,000	\$	5,000	\$	25,000	\$	100,000	
7.27	Lightning Masts	8.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	96,000	
7.28	Arrestor Stands	12.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	42,000	
7.29	Miscellaneous Materials and Above / Below Ground Works	1.00	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
7.30	Interconnection arrangement at Stolle Rd Substation	1.0	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
TOTAL - STOLLE RD SUBSTATION WORKS:			Ea			\$	100,000			\$	14,263,000	
8. GARDENVILLE 345/230kV SUBSTATION WORKS												
8.1	Site Works including sediment controls, access roads, rough grading, final grading	1.0	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
8.2	Substation Fence	1,400.0	LF			\$	200	\$	200	\$	280,000	Supply \& Install
8.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
8.4	Switches 3ph	1.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	7,000	
8.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
8.6	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor-operators	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
8.7	Instrument Transformers	1.0	Sum			\$	271,000	\$	271,000	\$	271,000	
8.8	Breakers	1.0	Ea	\$	250,000	\$	75,000	\$	325,000	\$	325,000	
8.9	Arrestors (3 per line)	12.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	90,000	
8.10	Line Traps	1.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	21,000	
8.11	230 kV buses	1.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	60,000	
8.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	
8.13	Low Profile Foundations	40.0	Ea			\$	5,000	\$	5,000	\$	200,000	Supply \& Install
8.14	Caisson DE Foundations	12.0	Ea			\$	50,000	\$	50,000	\$	600,000	Supply \& Install
8.15	Circuit Breaker Foundations	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
8.16	Lightning Mast Foundations	1.0	Ea			\$	15,000	\$	15,000	\$	15,000	Supply \& Install
8.17	SST Foundation	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
8.18	Control House and Pad (14' $\times 70{ }^{\prime}$ - 980 sq . ft)	1.0	Ea	\$	350,000	\$	100,000	\$	450,000	\$	450,000	
8.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
8.20	Control Cables	1.0	Sum	\$	100,000	\$	100,000	\$	200,000	\$	200,000	
8.21	125VDC Batteries	2.0	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
8.22	Station Services	2.0	Ea			\$	25,000	\$	25,000	\$	50,000	Supply \& Install
8.23	Protection, Telecom and Metering Equipment (Panels)	11.0	Ea			\$	30,000	\$	30,000	\$	330,000	Supply \& Install
8.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
8.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
8.26	Control Conduits from Cable Tray to Equipment	1.0	Sum			\$	357,500	\$	357,500	\$	357,500	Supply \& Install
8.27	Cable Trench Systems for Control Cables	1.0	Sum			\$	350,000	\$	350,000	\$	350,000	Supply \& Install
8.28	Grounding	1.0	Sum			\$	125,000	\$	125,000	\$	125,000	Supply \& Install
8.29	Bus Support 1 Ph	18.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	54,000	
8.30	Switch Stands	1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
8.31	Fuse Stand	1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
8.32	Misc. Structures	1.0	Sum			\$	27,000	\$	27,000	\$	27,000	
8.33	Substation A-Frame Structures Standalone	3.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	75,000	
8.34	Lightning Masts	1.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	12,000	
8.35	Arrestor Stands	6.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	21,000	
8.36	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum			\$	725,000	\$	725,000	\$	725,000	Supply \& Install
8.37	345kV - 230kV 480/540/600 MVA Transformer	1.0	Ea	\$	4,750,000	\$	750,000	\$	5,500,000	\$	5,500,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
8.38	Transformer Foundation with concrete moat and double steel grating	1.0	Ea		\$	150,000	\$	150,000	\$	150,000	
TOTAL - GARDENVILLE SUBSTATION WORKS:									\$	12,822,500	
9. NIAGARA SUBSTATION WORK											
9.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	0.6	Sum		\$	1,000,000	\$	1,000,000	\$	600,000	Supply \& Install
9.2	Substation Fence	320.0	LF		\$	200	\$	200	\$	64,000	Supply \& Install
9.3	Switches 3ph	2.0	Ea	\$ 5,000	\$	2,000	\$	7,000	\$	14,000	
9.4	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor operators	1.0	Ea	\$ 15,000	\$	15,000	\$	30,000	\$	30,000	
9.5	Instrument Transformers	1.0	Sum		\$	163,000	\$	163,000	\$	163,000	
9.6	Breakers	1.0	Ea	\$ 250,000	\$	75,000	\$	325,000	\$	325,000	
9.7	Arrestors (3 per line)	6.0	Ea	\$ 6,500	\$	1,000	\$	7,500	\$	45,000	
9.8	Line Traps	1.0	Ea	13,000	\$	8,000	\$	21,000	\$	21,000	
9.9	345 kV buses	0.5	Ea	25,000	\$	35,000	\$	60,000	\$	30,000	
9.10	Low Profile Foundations	37.0	Ea		\$	5,000	\$	5,000	\$	185,000	Supply \& Install
9.11	Caisson DE Foundations	4.0	Ea		\$	50,000	\$	50,000	\$	200,000	Supply \& Install
9.12	Circuit Breaker Foundations	1.0	Ea		\$	75,000	\$	75,000	\$	75,000	Supply \& Install
9.13	Control Cables	1.0	Sum	\$50,000	\$	50,000	\$	100,000	\$	100,000	
9.14	Protection, Telecom and Metering Equipment (Panels)	3.0	Ea		\$	30,000	\$	30,000	\$	90,000	Supply \& Install
9.15	SCADA and Communications	1.0	Sum		\$	250,000	\$	250,000	\$	250,000	Supply \& Install
9.16	Control Conduits from Cable Trench to Equipment	1.0	Sum		\$	75,000	\$	75,000	\$	75,000	Supply \& Install
9.17	Cable Trench Systems for Control Cables	1.0	Sum		\$	350,000	\$	350,000	\$	350,000	Supply \& Install
9.18	Grounding	1.0	Sum		\$	125,000	\$	125,000	\$	125,000	Supply \& Install
9.19	Underground Riser Structures	6.0	Ea	\$ 2,500	\$	1,000	\$	3,500	\$	21,000	
9.20	Bus Support 1 Ph	6.0	Ea	2,000	\$	1,000	\$	3,000	\$	18,000	
9.21	Switch Stands	2.0	Ea	\$ 8,000	\$	3,000	\$	11,000	\$	22,000	
9.22	Misc. Structures	1.0	Ea		\$	8,000	\$	8,000	\$	8,000	
9.23	Substation A-Frame Structures Standalone	1.0	Ea	\$ 20,000	\$	5,000	\$	25,000	\$	25,000	
9.24	Arrestor Stands	3.0	Ea	2,500	\$	1,000	\$	3,500	\$	10,500	
9.25	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		\$	200,000	\$	200,000	\$	200,000	Supply \& Install
9.26	345 kV underground cable with terminations. (680 Circuit Ft .)	1.0	Ea		\$	1,200,000	\$	1,200,000	\$	1,200,000	Supply \& Install
TOTAL - NIAGARA SUBSTATION WORKS:									\$	4,246,500	
10. MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:											
	Contractor Mobilization / Demobilization										
	Mob / Demob	1.0	Sum		\$	2,000,000	\$	2,000,000	\$	2,000,000	
	Project Management, Material Handling \& Amenities						\$	-	\$	-	
10.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision,	36.0	Months		\$	450,000	\$	450,000	\$	16,200,000	
10.3	Site Accommodation, Facilities, Storage	1.0	Sum		\$	2,500,000	\$	2,500,000	\$	2,500,000	
	Engineering						\$	-	\$	-	
10.4	Design Engineering	1.0	Sum		\$	10,500,000	\$	10,500,000	\$	10,500,000	
10.5	LiDAR	1.0	Sum		\$	800,000	\$	800,000	\$	800,000	
10.6	Geotech	1.0	Sum		\$	1,700,000	\$	1,700,000	\$	1,700,000	
10.7	Surveying/Staking	1.0	Sum		\$	1,000,000	\$	1,000,000	\$	1,000,000	
	Testing \& Commissioning										
10.8	Testing \& Commissioning of T-Line and Equipment	1.0	Sum		\$	2,500,000	\$	2,500,000	\$	2,500,000	
	Permitting and Additional Costs						\$	-	\$	-	
10.9	Environmental Licensing \& Permitting Costs	1.0	Sum		\$	4,336,429	\$	4,336,429	\$	4,336,429	
10.10	Environmental Mitigation	1.0	Sum		\$	20,514,989	\$	20,514,989	\$	20,514,989	

Item	Description	Quantity	Unit		Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
10.11	Warranties / LOC's	1.0	Sum			\$	1,358,623	\$	1,358,623	\$	1,358,623	
10.12	Real Estate Costs (New)	1.0	Sum			\$	7,675,534	\$	7,675,534	\$	7,675,534	
10.13	Real Estate Costs (Incumbent Utility ROW)	1.0	Sum			\$	4,555,924	\$	4,555,924	\$	4,555,924	
10.14	Legal Fees	1.0	Sum			\$	3,500,000	\$	3,500,000	\$	3,500,000	
10.15	Sales Tax on Materials	1.0	Sum	\$	8,164,882			\$	8,164,882	\$	8,164,882	
10.16	Fees for permits, including roadway, railroad, building or other local permits	1.0	Sum			\$	200,000	\$	200,000	\$	200,000	
TOTAL - MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:										\$	87,506,380	
11. SYSTEM UPGRADE FACILITIES												
SUF 1.1	Depew to Erie Street 115 kV Transmission Line 921. Terminal allowance included. See comments.	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	Relay was replaced and line ratings increased to 124/137/158 (NOR/LTE/STE) resulting ratings are below line conductor
SUF 1.2	Engineering, T\&C, PM, Indirects for SUF 1.1 (15\%)							\$	-	\$	75,000	
SUF 2.1	Shawnee to Swann Reconductor	12.00	Mile			\$	400,000	\$	400,000	\$	4,800,000	Rate for reconductor is pro-rated from National Grid Niagara - Packard
SUF 2.2	Engineering, T\&C, PM, Indirects FOR SUF 2.2 (15\%)							\$	-	\$	720,000	
SUF 3	Roll Rd Substation											
SUF 3.1	Restoration of station stone within existing substation fence. Assume spoil	1.00	Ea			\$	100,000	\$	100,000	\$	100,000	Supply \& Install
SUF 3.2	Transformer 115-34.5kV 90 MVA	1.00	Ea	\$	700,000	\$	200,000	\$	900,000	\$	900,000	
SUF 3.3	Switches 115kV 3Ph	1.00	Ea	\$	15,000	\$	12,000	\$	27,000	\$	27,000	
SUF 3.4	Switches 35kV 3Ph	1.00	Ea	\$	6,000	\$	4,000	\$	10,000	\$	10,000	
SUF 3.5	Breakers 115kV 1200A	1.00	Ea	\$	150,000	\$	50,000	\$	200,000	\$	200,000	
SUF 3.6	Breakers 35kV 2000A	1.00	Ea	\$	75,000	\$	15,000	\$	90,000	\$	90,000	
SUF 3.7	CVT's 115kV	3.00	Ea	\$	10,000	\$	8,000	\$	18,000	\$	54,000	
SUF 3.8	Arrestors 115kV	6.00	Ea	\$	5,000	\$	700	\$	5,700	\$	34,200	
SUF 3.9	Arrestors 35 kV (for transformer)	3.00	Ea	\$	2,500	\$	500	\$	3,000	\$	9,000	
SUF 3.10	Low Profile Foundations	8.00	Ea			\$	5,000	\$	5,000	\$	40,000	Supply \& Install
SUF 3.11	Circuit Breaker Foundation 115kV	1.00	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
SUF 3.12	Circuit Breaker Foundation 35kV	1.00	Ea			\$	30,000	\$	30,000	\$	30,000	Supply \& Install
SUF 3.13	Transformer Foundation with concrete moat and double steel grating	1.00	Ea			\$	150,000	\$	150,000	\$	150,000	Supply \& Install
SUF 3.14	Firewall 30 ' long $\times 12^{\prime}$ tall $\times 1^{\prime}$ thick with footer	1.00	Ea			\$	100,000	\$	100,000	\$	100,000	Supply \& Install
SUF 3.15	Control Cables	1.00	Sum			\$	50,000	\$	50,000	\$	50,000	Supply \& Install
SUF 3.16	Protection \& Telecom Equipment	3.00	Ea			\$	30,000	\$	30,000	\$	90,000	Supply \& Install
SUF 3.17	SCADA and Communications	1.00	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
SUF 3.18	Low Voltage AC Distribution	1.00	Sum			\$	30,000	\$	30,000	\$	30,000	Supply \& Install
SUF 3.19	Control Conduits	1.0	Sum			\$	50,000	\$	50,000	\$	50,000	Supply \& Install
SUF 3.20	Grounding	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
SUF 3.21	Switch Stand 115kV (reuse 1 existing)	1.0	Ea	\$	1,500	\$	800	\$	2,300	\$	2,300	
SUF 3.22	CVT Stand	3.0	Ea	\$	1,000	\$	1,000	\$	2,000	\$	6,000	
SUF 3.23	Arrestor Stand	3.0	Ea	\$	1,000	\$	1,000	\$	2,000	\$	6,000	
SUF 3.24	Misc Materials and Above / Below Ground Works	1.0	Sum			\$	120,000	\$	120,000	\$	120,000	Supply \& Install
SUF 3.25	Engineering, T\&C, PM, Indirects for SUF 3 (15\%)							\$	-	\$	333,525	Assumed 15\% to cover all misc costs
SUF 4.1	Lockport to Shaw 115 kV Transmsision Line 102. NAT report indicated: Remove all limitations to achieve line conductor ratings as the limit. Terminal allowance included.	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	The limiting equipment is not known scope undefined.
SUF 4.2	Engineering, T\&C, PM, Indirects for SUF 4.1 (15\%)							\$	-	\$	75,000	
SUF 5	Gardenville Circuit Breaker Replacement											
SUF 5.1	Circuit Breaker Foundation	12.0	Ea			\$	75,000	\$	75,000	\$	900,000	Supply \& Install
SUF 5.2	Below Grade Conduit \& Grounding	1.0	Sum			\$	1,200,000	\$	1,200,000	\$	1,200,000	Supply \& Install
SUF 5.3	Circuit breaker - 230kV	12.0	Ea	\$	250,000	\$	75,000	\$	325,000	\$	3,900,000	

Item	Description	Quantity	Unit		Rate		uipment		tal Unit Rate:		TAL:	Remarks
SUF 5.4	Switches - 230kV	24.0	Ea	\$	20,000	\$	15,000	\$	35,000	\$	840,000	
SUF 5.5	Control Cables	1.0	Sum			\$	1,200,000	\$	1,200,000	\$	1,200,000	Supply \& Install
SUF 5.6	Misc Above Ground Works	1.00	Sum			\$	900,000	\$	900,000	\$	900,000	Supply \& Install
SUF 5.7	Engineering, T\&C, PM, Indirects for SUF 5 (15\%)									\$	1,341,000	Assumed 15\% to cover all misc costs
SUF 6	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)									\$	3,750,000	Contingency for possible additional SUF upgrades
TOTAL - SYSTEM UPGRADE FACILITIES:										\$	23,258,025	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - TOO9	
FEDERAL						Proposal 4	
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan		
						\$52,240	\$137,075
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$77,600	\$193,600
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)	\$3,000	\$9,000
STATE							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Intervenor Fund payment expected to be $\$ 350,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans		
						\$850,000	\$3,350,000

NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan		
						\$31,160	\$94,550
NYSDEC	Stormwater (lf >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)		
						\$11,200	\$38,000
NYSDOS	State Coastal Management Program Mapped Coastal Area Boundary	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coastal Zone; and consistency with Local Waterfront Revitalization Plans (LWRPs); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)			
						\$3,400	\$15,000
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies (not included in costing)	\$33,120	\$108,760
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400
NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$200,000
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee $=\$ 25$ plus $\$ 2,000,000$ additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$3,800	\$3,800

NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2-yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000
REGIONAL							
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$200,000
LOCALIMUNICIPAL							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000
Town, City or Village	Variable	Building Permits	New Structures			\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000

			Minimum	Maximum
	ENVIRONMENTAL LICENSING \& PERMITTING COST (EXCLUDING MITIGATION)	PROJECT T009 TOTAL	\$1,147,720	\$4,634,185
cluded cost: Mitiga		Expected Value	\$4,336,428.75	

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T009 - North American Transmission
UBSTATION ENGINEERING
COMPAN Y

ENVIRONMENTAL MITIGATION ESTIMATE
Revision: 4

	Offsite Wetland Mitigation*		Farmland**	
	Min.	Max.	Min.	Max.
Area	117 acres	117 acres	53 acres	106 acres
Cost/Acre	$\$ 50,000$	$\$ 100,000$	$\$ 503$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$
Total	$\$ 5,850,000$	$\$ 35,100,000$	$\$ 26,659$	$\$ 53,318$

T009 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\$ 5,876,659$	$\$ 35,153, \mathbf{3 1 8}$	$\mathbf{\$} \mathbf{2 0 , 5 1 4 , 9 8 9}$

*Offsite wetland mitigation area assumes Highway Alternative Route; clearing of NWI Forested/Shrub Wetland Approx. 2.37 miles (12517 LF) by 100' ROW width and 3.24 miles (17107 LF) by 225' ROW width; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in non-forested wetlands; cost per acre Min. and Max. reduced due to area total over 50 acres; includes design and installation costs only; does not include land acquisition or long term monitoring.
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 17.58 miles (92822 LF) Adjacent to Agriculture Properties by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T009 - North American Transmission

REAL ESTATE ESTIMATE

(NEW ROW)

COUNTY: DEVELOPER:		NIAGARA \& ERIE NORTH AMERICAN (T009)		
SEGMENT:		NIAGARA - DYSINGER - STOLLE SEGMENT		
	Address	Area (Acres)		Cost
A NIAGARA COUNTY				
	Sub Total (A)	2.38	\$	51,560.00
B	ERIE COUNTY			
	Sub Total (A)	0.68	\$	4,376.00
	Total ($\mathrm{A}+\mathrm{B}$)	3.06	\$	55,936.00

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T009 - North American Transmission

REAL ESTATE ESTIMATE

COUNTY:
DEVELOPER:
l SEGMENT:
NORTH AMERICAN (T009) STOLLE TO GARDENVILLE SEGMENT

COUNTY: DEVELOPER: SEGMENT:

NIAGARA \& ERIE
NORTH AMERICAN (T009)
NIAGARA-DYSINGER - STOLLE - GARDENVILLE SEGMENT

SEGMENT	COUNTY	INCUMBENT UTILITY (ROW) (ACRES)	TOTAL ROW COST
Dysinger SS to Stolle Rd SS - 2×19.98 miles	Niagara	10.33	\$ 4,234,000
	Erie	534.58	
Stolle Rd SS to Gardenville SS - 12.84 miles	Erie	27.55	
Niagara to Dysinger - 27.16	Niagara	408.32	

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T009 - North American Transmission
REAL ESTATE ESTIMATE
COUNTY:

l	ERIE	
DEVELOPER:		
SEGMENT:		NORTH AMERICAN (TOO9) STOLLE ROAD TO GARDENVILLE
		Total Valuation of Property with 3\% Escalation/year (as of 2017)
	Total Valuation Cost	$\$$

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T009 - North American Transmission

REAL ESTATE ESTIMATE

COUNTY:	NIAGARA
DEVELOPER:	NORTH AMERICAN (T009)
SEGMENT:	DYSINGER SWITCHYARD
	Total Cost
Total Cost of Proposed Substation Site	\$152,750.00

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T009 - North American Transmission
REAL ESTATE ESTIMATE
COUNTY:
DEVELOPER:

l	ERIE		
SEGMENT:	NORTH AMERICAN (TO09)		
		STOLLE ROAD SUBSTATION	
		Total Cost	
	Total Cost of Proposed Substation Site	$\$ 19,440.00$	

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T009 - North American Transmission
REAL ESTATE ESTIMATE

COUNTY:	ERIE
DEVELOPER:	NORTH AMERICAN (T009)
SEGMENT:	GARDENVILLE SUBSTATION (OPTION 1)
	Total Cost
Total Cost of Proposed Substation Site	\$ 309,483.90

ASSUMPTIONS AND CLARIFICATIONS

Revision: 4
u) Offsite wetland mitigation area costs based on a total of approximately 5.6 miles of impacts anticipated by clearing of NWI Forested/Shrub Wetland (calculated by GEI based on NWI mapper legend categories) using the Stolle Road to Gardenville Highway alternative (0.65 miles). Assumes clearing an additional 125 feet within the 3.24 mile Dysinger to Stolle Road Right of Way (for a total of 225 feet width) and 100 feet of additional clearing in the 1.72 mile Dysinger to Niagara segment. Minimum costs at $\$ 50,000 /$ acre, maximum costs at $\$ 100,000 /$ acre for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring. Minimum and maximum costs for this proposal assumes a reduced mitigation cost/acre due to size of mitigation.
v) Agricultural mitigation assumes timber matting impacts and pad impacts on a total of 17.6 miles of adjacent agriculture land (22.86 miles for the Stolle to Gardenville Highway route and Dysinger to Niagara minus 5.28 of duplicate miles for the second circuit from Dysinger to Stolle Rd) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25 -foot-wide impact, Maximum assumes 50 -foot-wide impact.
w) No tree survey or replanting required outside regulated wetlands areas.
x) Article VII Intervenor Fund payment expected to be $\$ 350,000$.
y) Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.).
z) Did not calculate for any real estate acquisition cost of public or private lands or fees associated for property rights for railroad crossings, town road crossings etc.
aa) Expected value of environmental licensing and permitting cost is estimated to be 50% higher than the mean of the range based upon the addition of the new Gardenville to Stolle 345 kV line, a second Dysinger to Stolle line and a new Niagara to Dysinger 345 kV line.
ab) SUF pricing includes 35% to cover Contractor markup (15\%) and contingency (20\%)
ac) SUF reconductor rate is based on Niagara-Packard (National Grid) reconductor estimate, pro-rated to a rate / mile. Note that this is based on conductor, shieldwire and hardware pricing only and does not include structure or foundation works.
ad) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

ATTACHMENT B5
T011 - NATIONAL GRID

Segment	Description	Total Amount	
	CLEARING \& ACCESS WORKS FOR T-LINE CONSTRUCTION	\$	28,554,443
1	WG D2 -IDENTIFIED LINE WORK 180, 181, 182 (MINIMAL SOLUTION)	\$	45,533,358
	WG E NEW BUS TIE BREAKER AT PACKARD STATION TO BE PLACED IN SERIES WITH EXISTING BREAKER R342	\$	880,000
	WG F REPLACE THERMALLY LIMITING EQUIPMENT AT PACKARD STATION FOR LINE 181	\$	200,000
2	WG-H IDENTIFIED LINE WORK 130, 133	\$	7,261,318
	WG-I REPLACE THERMALLY LIMITING EQUIPMENT AT HUNTLEY STATION	\$	235,000
3	WG-J IDENTIFIED LINE WORK 191	\$	3,670,736
4	WG-M IDENTIFIED LINE WORK 103, 104	\$	486,376
	WG-N REPLACE THERMALLY LIMITING EQUIPMENT AT LOCKPORT STATION FOR LINES 101,102	\$	500,000
5	WG-O - NYSEG/NYPA/N GRID - ELIMINATE DOUBLE CIRCUIT CONTINGENCY FOR LINE 61/64	\$	1,570,740
	WG-P2 - IDENTIFIED 181 LINE WORK (URBAN SWITCH TO ERIE, NYSEG)	\$	3,564,852
	WG-Q - REPLACE THERMALLY LIMITING EQUIPMENT AT ERIE STN FOR LINE 181	\$	1,250,000
	WG-R - REPLACE THERMALLY LIMITING EQUIPMENT LINE 54 (NYSEG 921)	\$	1,250,000
	WG-U - REPLACE THERMALLY LIMITING EQUIPMENT ROBINSON STN LINE 64	\$	1,700,000
	WG-V - REPLACE THERMALLY LIMITING EQUIPMENT NIAGARA STN LINE 102	\$	500,000
	MOBILIZATION, ACCESS, CIVILS, PROJECT MANAGEMENT, OVERHEADS, MISC:	\$	27,447,225
	CONTRACTOR MARK UP (OH\&P) 15\%	\$	18,690,607
	SUBTOTAL (A):	\$	143,294,655
	CONTINGENCY ON ENTIRE PROJECT (20\%)	\$	28,658,931
	TOTAL (A):	\$	171,953,585
	SYSTEM UPGRADE FACILITIES	\$	3,750,000
	CONTRACTOR MARKUP \& CONTINGENCY (35\%)	\$	1,312,500
	SUBTOTAL (B):	\$	5,062,500
	TOTAL PROJECT COST ($\mathrm{A}+\mathrm{B}$):	\$	177,016,085

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		TOTAL	Remarks
Clearing \& Access Works for T-Line Construction										
	Access, Matting, ROW Maintenance					\$	-	\$	-	
1.1	Gravel Access Road Improvement	17,000.00	LF		\$	\$	7	\$	119,000	Assumes Type 1 Gravel Road
1.2	Temporary Matting	250,000.00	LF		\$ 70	\$	70	\$	17,500,000	
1.3	Work Pads	108,500.00	SF		\$	\$	4	\$	381,920	
1.4	Restoration for Work Pad areas	10,850.00	SF		\$ 0.2	\$	0.2	\$	1,628	
1.5	New Access Roads	21,000.00	LF		\$ 250	\$	250	\$	5,250,000	
1.6	Air Bridge	6.00	EA		\$ 14,445	\$	14,445	\$	86,670	
1.7	Stabilized Construction Entrance	240.00	EA		\$ 4,580	\$	4,580	\$	1,099,200	
1.8	Maintenance and Protection of Traffic on Public Roads	1.00	LS		\$ 1,500,000	\$	1,500,000	\$	1,500,000	
1.9	Temporary Access Bridges	15.00	EA		\$ 20,035	\$	20,035	\$	300,525	
1.10	Concrete Washout Station	30.00	EA		\$ 1,850	\$	1,850	\$	55,500	
1.11	Rock Coring Allowance for Foundations (say 5ft / caisson for 60 caissons)	300.00	FT		\$ 4,200	\$	4,200	\$	1,260,000	
1.12	Snow Removal \& Maintenance	1.00	Sum		\$ 1,000,000	\$	1,000,000	\$	1,000,000	
TOTAL CLEARING \& ACCESS:								\$	28,554,443	
SEGMENT 1	D2, E \& F									
WG D2 -Identified Line Work 180, 181, 182 (Minimal Solution)										
2	Removal of Existing 115kV Line									
	Wire Removal Work									
	Line 181/105 - Remove approximately 26.6 circuit miles, 115kV/69kV (Packard Substation to Ellicott Junction):									
2.1	Remove 13.3 circuit miles (typically 350 MCM 19 strand Copper) - Line 105	13.30	Mile		\$ 15,000	\$	15,000	\$	199,500	
2.2	Remove 13.3 circuit miles (typically 350 MCM 19 strand Copper) - Line 181	13.30	Mile		15,000	\$	15,000	\$	199,500	
2.3	Remove 26.6 miles of existing $3 / 8^{\prime \prime} \times 7$ steel EHS shieldwire	26.60	Mile		12,000	\$	12,000	\$	319,200	
2.4	Conductor attachment assembly at Packard Substation	1.00	Lot		20,000	\$	20,000	\$	20,000	
	Line 180/181-Remove approximately 7.2 circuit miles, 115kV (Ellicott Junction to Youngman Substation):					\$	-			
2.5	Remove 7.2 circuit miles (typically 400 MCM 19 strand Copper) - Line 180	7.20	Mile		\$ 15,000	\$	15,000	\$	108,000	
2.6	Remove 7.2 circuit miles (typically 350 MCM 19 strand Copper) - Line 181	7.20	Mile		15,000	\$	15,000	\$	108,000	
2.7	Remove 14.4 miles of existing $3 / 8{ }^{\prime \prime} \times 7$ steel EHS shieldwire	14.40	Mile		12,000	\$	12,000	\$	172,800	
2.8	Conductor attachment assembly at Urban Switch	1.00	Lot		20,000	\$	20,000	\$	20,000	
	Line 180/182-Remove approximately 12.4 circuit miles, 115kV (Structure 280 at Packard to Grand Island Substation):									
2.9	Remove 12.4 circuit miles (typically 400 MCM 19 strand Copper) - Line 182	12.40	Mile		\$ 15,000	\$	15,000	\$	186,000	
2.10	Remove 12.4 miles of existing $3 / 8^{\prime \prime} \times 7$ steel EHS shieldwire	12.40	Mile		12,000	\$	12,000	\$	148,800	
	Line 182/92-Remove approximately 7.2 circuit miles, $115 \mathrm{kV} / 69 \mathrm{kV}$ (Ellicott Junction to Youngman Substation):									
2.11	Remove 7.2 circuit miles (typically 400 MCM 19 strand Copper) - Line 182	7.20	Mile		\$ 15,000	\$	15,000	\$	108,000	
2.12	Remove 7.2 circuit miles (typically 400 MCM 19 strand Copper) - Line 92	7.20	Mile		\$ 15,000	\$	15,000	\$	108,000	
2.13	Remove 14.4 miles of existing $3 / 8^{\prime \prime} \times 7$ steel EHS shieldwire	14.40	Mile		\$ 12,000	\$	12,000	\$	172,800	
	Structure Removal Work									
	Line 181/105 - Remove 181 structures (Packard Substation to Ellicott Junction)									
	Remove 37 deadend structures:									
2.14	Remove 34 double circuit lattice deadend towers	34.00	Structure		\$ 9,000	\$	9,000	\$	306,000	
2.15	Remove 3 single pole wood deadend structures	3.00	Structure		\$ 5,000	\$	5,000	\$	15,000	
	144 suspension structures:									
2.16	Remove 11 double circuit steel suspension towers	11.00	Structure		\$ 7,500	\$	7,500	\$	82,500	
2.17	Remove 10 double circuit suspension flex towers	10.00	Structure		\$ 8,000	\$	8,000	\$	80,000	
2.18	Remove 6 H -Frame wood suspension structures	6.00	Structure		\$ 6,000	\$	6,000	\$	36,000	
2.19	Remove 1172 pole-wood suspension structures	117.00	Structure		\$ 6,000	\$	6,000	\$	702,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		TOTAL	Remarks
	Line 180/181 - Remove 39 Structures (Ellicott Junction to Youngman Substation):									
	Remove 18 deadend structures:									
2.20	Remove 14 double circuit lattice deadend towers	14.00	Structure		\$ 9,000	\$	9,000	\$	126,000	
2.21	Remove 4 double circuit single pole steel deadend structures	4.00	Structure		8,000	\$	8,000	\$	32,000	
	Remove 21 suspension structures:									
2.22	Remove 19 double circuit flex towers suspension structures	19.00	Structure		7,000	\$	7,000	\$	133,000	
2.23	Remove 1 H -frame suspension structure	1.00	Structure		6,000	\$	6,000	\$	6,000	
2.24	Remove 1 double circuit single pole steel suspension structure	1.00	Structure		7,000	\$	7,000	\$	7,000	
	Line 180/182-Remove 65 structures (Structure 280 at Packard to Grand Island Substation):									
	Remove 53 structures - Ellicott Junction to Pack Club Lane Substation									
	Remove 20 deadend structures									
2.25	Remove 8 double circuit lattice deadend towers	8.00	Structure		9,000	\$	9,000	\$	72,000	
2.26	Remove 1 single pole wood deadend structure	1.00	Structure		5,000	\$	5,000	\$	5,000	
2.27	Remove 5 double circuit steel pole deadend structures	5.00	Structure		9,000	\$	9,000	\$	45,000	
2.28	Remove 1 H -frame wood deadend structure	1.00	Structure		6,000	\$	6,000	\$	6,000	
	Remove 38 suspension structures:									
2.29	Remove 29 double circuit suspension flex towers	29.00	Structure		7,000	\$	7,000	\$	203,000	
2.30	Remove 1 double circuit steel suspension towers	1.00	Structure		6,000	\$	6,000	\$	6,000	
2.31	Remove 82 -pole wood suspension structures	8.00	Structure		8,000	\$	8,000	\$	64,000	
	Line 182 - Remove 12 structures (Near Urban Switch):									
	Remove 4 deadend structures:									
2.32	Remove 2 double circuit lattice deadend towers	2.00	Structure		\$ 16,000	\$	16,000	\$	32,000	
2.33	Remove 23 -pole wood deadend structures	2.00	Structure		8,000	\$	8,000	\$	16,000	
	Remove 8 suspension structures:									
2.34	Remove 3 double circuit steel suspension towers	3.00	Structure		8,000	\$	8,000	\$	24,000	
2.35	Remove 3 double circuit suspension flex towers	3.00	Structure		7,000	\$	7,000	\$	21,000	
2.36	Remove 2 H -frame suspension structures	2.00	Structure		6,000	\$	6,000	\$	12,000	
	Line 182/92-Remove 39 structures (Ellicott Junction to Youngman Substation):									
	Remove 18 deadend structures:									
2.37	Remove 14 double circuit lattice deadend towers	14.00	Structure		9,000	\$	9,000	\$	126,000	
2.38	Remove 4 double circuit single pole steel deadend structures	4.00	Structure		8,000	\$	8,000	\$	32,000	
	Remove 21 suspension structures:									
2.39	Remove 19 double circuit flex towers suspension structures	19.00	Structure		7,000	\$	7,000	\$	133,000	
2.40	Remove 1 H -frame suspension structure	1.00	Structure		6,000	\$	6,000	\$	6,000	
2.41	Remove 1 double circuit single pole steel suspension structure	1.00	Structure		8,000	\$	8,000	\$	8,000	
2.42	Remove (2) Crossing Rail Road (3) Crossing Niagara River 300 ft. (3) offshore after Niagara River Crossing	8.00	Structure		10,000	\$	10,000	\$	80,000	
	Proposed Rebuild of 115 kV Lines									
2.43	Install Davit Arm Steel 1P suspension DCSS 115kV Structure Type P	63.00	Structure	\$ 9,000.00	8,100	\$	17,100	\$	1,077,300	
2.44	Install DE DCSS 115kV Structure Type Q	32.00	Structure	\$ $29,700.00$	26,730	S	56,430	\$	1,805,760	
2.45	Install Davit Arm Wood Restrained Suspension 115kV Structure Type R	165.00	Structure	\$ 3,500.00	26,000	\$	29,500	\$	4,867,500	
2.46	Install Davit Arm Steel DE 115kV Structure Type S	57.00	Structure	\$ 18,000.00	\$ 16,200	S	34,200	\$	1,949,400	
2.47	Install 6' Dia x 23' deep reinforced concrete foundation caisson (cylindrical) Structure Type S (35 Nos)	1,100.00	CY		1,500	\$	1,500	\$	1,650,000	
2.48	Direct Embedment foundation 36" Dia x 14' Deep Structure Type R (165 Nos)	165.00	Structure		\$ 22,000	\$	22,000	\$	3,630,000	
2.49	Direct Embedment foundation 36" Dia x 20 ' Deep Structure Type P (63 Nos)	63.00	Structure		\$ 25,000	\$	25,000	\$	1,575,000	
2.50	Install 6' Dia x 31' deep reinforced concrete foundation caisson (cylindrical) Structure Type Q (24 Nos)	980.00	CY		1,500	\$	1,500	\$	1,470,000	
2.51	Install 8' Dia $\times 38^{\prime}$ deep reinforced concrete foundation caisson (cylindrical) Structure Type S/Q Angle DE (30 Nos)	2,100.00	CY		1,500	\$	1,500	\$	3,150,000	
	Install Wire Work									
	Line 181 - Install approximately 13.3 circuit miles, 115kV (Packard Substation to Ellicott Junction)									
2.52	Install 13.3 circuit miles of 1590 kcmil ACSR "FALCON" conductor	13.30	Mile	\$ 55,440.00	\$ 79,200	\$	134,640	\$	1,790,712	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		TOTAL	Remarks
WG D2 - TOTAL SUPPLY \& INSTALL:								\$	45,533,358	
WG E New Bus Tie Breaker at Packard Station to be placed in series with existing Breaker R342										
3	New Bus Breaker at Packard Station									
3.1	GCB 115kV - 3000A, 63kA	1.00	Unit		150,000	\$	150,000	\$	150,000	Supply \& Install
3.2	115LB1WV1 1 Way Loadbreak Switch Vertical (Located at Structure T and includes the pole)	1.00	Structure		250,000	\$	250,000	\$	250,000	
3.3	Relocate 1 No. existing 115kV 3000A disconnect switch 343 to the right of tie breaker R342	1.00	Sum		20,000	\$	20,000	\$	20,000	
3.4	Install one new 115kV 123kV , 63kA 3000A SF6 bus tie breaker in series with existing 115kV Areva bus tie R342 breaker	1.00	Sum	\$ 150,000.00	50,000	\$	200,000	\$	200,000	
3.5	Install new cable and conduit between new tie breaker and control house and associated shield cables	1.00	Sum		35,000	\$	35,000	\$	35,000	Supply \& Install
3.6	Install new set of AL power conductors and AL four hole pad connectors	1.00	Sum		12,000	\$	12,000	\$	12,000	
3.7	Install new AL bus and a 5 " upper bus extension to existing breaker R2103 and associated disconnect switches	1.00	Sum		18,000	\$	18,000	\$	18,000	
3.8	Structures for Switch and Bus Support	1.00	Sum		30,000	\$	30,000	\$	30,000	
3.9	Relocate 115 kV disconnect switch 2104 and R2103	1.00	Sum		15,000	\$	15,000	\$	15,000	
3.10	Grounding all new electrical equipment	1.00	Sum		10,000	\$	10,000	\$	10,000	
3.11	Reconnect, control and integration, test and commissioning	1.00	Sum		20,000	\$	20,000	\$	20,000	
3.12	Supply and Install new 115 kV switch R2101	1.00	Sum		100,000	\$	100,000	\$	100,000	
3.13	Allowance for all secondary electrical works including DC power, AC power and system protection	1.00	Sum		20,000	\$	20,000	\$	20,000	
WG E- TOTAL SUPPLY \& INSTALL:								\$	880,000	
WG F Replace Thermally Limiting Equipment at Packard Station for Line 181										
4	Replace existing components by suitable aluminum conductor.									
4.1	Allowance for Thermally Limiting Equipment Upgrade	1.00	Sum		200,000	\$	200,000	\$	200,000	Supply \& Install
WG F - TOTAL SUPPLY \& INSTALL:								\$	200,000	
SEGMENT 2	H\&I									
WG-H Identified Line Work 130, 133										
5	Wire Removal Work									
	Line 130/133-Remove approximately 18.2 circuit miles, 115kV/69kV (Packard Structures 140 and -Huntley Substation):									
5.1	Remove 18.2 circuit miles (typically 350 MCM 19 strand Copper)	18.20	Mile		\$ 15,000	\$	15,000	\$	273,000	Supply \& Install
5.2	Transfer existing $3 / 8^{\prime \prime} \times 7$ steel EHS shieldwire on 6 structures	26.60	Per Structure		\$ 24,000	\$	24,000	\$	638,400	
	Structure Removal Work									
	Line 130/133-Remove 7 double circuit steel deadend lattice towers, $115 \mathrm{kV} / 69 \mathrm{kV}$ (Packard Structures 140 and -Huntley	tation):								
	Remove 11 deadend structures:									
5.3	Remove 7 double circuit lattice deadend towers	7.00	Structure		\$ 12,000	\$	12,000	\$	84,000	
5.4	Remove 4 single pole wood deadend structures	4.00	Structure		\$ 6,000	\$	6,000	\$	24,000	
5.5	Remove 1 double circuit steel suspension flex tower	1.00	Structure		\$ 14,000	S	14,000	\$	14,000	
	Structure Re-inforce Work									
5.6	Install 8 concrete foundation caissons	8.00	Structure		\$ 150,000	\$	150,000	\$	1,200,000	
5.7	Install 4 wood 3-pole deadend pole structures in kind	4.00	Structure	\$ 25,000.00	\$ 25,000	\$	50,000	\$	200,000	
5.8	Replace seven double circuit steel deadend lattice towers with double circuit steel deadend single pole structures on concrete foundations.	7.00	Structure		\$ 85,000	\$	85,000	\$	595,000	
5.9	Replace one double circuit steel suspension flex tower with double circuit steel deadend single pole structure on concrete foundation.	1.00	Structure		\$ 85,000	\$	85,000	\$	85,000	Supply \& Install
5.10	Replace steel members on (16) deadend lattice towers	16.00	Structure		\$ 10,000	\$	10,000	\$	160,000	
5.11	Replace hardware on (30) double circuit deadend structures	30.00	Structure		\$ 4,000	\$	4,000	\$	120,000	
5.12	Install longitudinal guys on two flex towers	2.00	Structure		\$ 25,000	\$	25,000	\$	50,000	

Item	Description	Quantity	Unit	Supply Rate	 Equipment Rate		Unit Rate		TOTAL	Remarks
	Permitting and Additional Costs					\$	-	\$	-	
16.9	Environmental Licensing \& Permitting Costs (see separate tab for breakdown)	1.00	Sum		\$ 3,984,698	\$	3,984,698	\$	3,984,698	
16.10	Environmental Mitigation Costs (see separate tab for breakdown)	1.00	Sum		\$	\$	227	\$	227	
16.11	Warranties / LOC's	1.00	Sum		\$ 515,916	\$	515,916	\$	515,916	
16.12	Legal Fees	1.00	Sum		2,000,000	\$	2,000,000	\$	2,000,000	
16.13	Sales Tax on Materials	1.00	Sum	\$ 1,526,384		\$	1,526,384	\$	1,526,384	Includes 8.75\% sales tax
16.14	Allowance for Funds Used During Construction (AFUDC)	1.00	Sum			\$	-	\$	-	
16.15	Carrying Charges	1.00	Sum			5	-	\$	-	
16.16	Fees for easements or permits, including roadway, railroad, building or other local permits	1.00	Sum			\$	200,000	\$	200,000	
PM, OVERHEADS, ACCESS, MISC TOTAL:								\$	27,447,225	
SYSTEM UPGRADE FACILITIES										
SUF 1	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)							\$	3,750,000	Contingency for possible additional SUF upgrades
SYSTEM UPGRADE FACIIITY TOTAL:								\$	3,750,000	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T011							
FEDERAL						Segment 1		Segment 2		Segment 3		Segment 4	
Agency	Jurisdicition	PermitApproval	Primary Regulated Areas	General Permiting Notes	Potential StudiesiPlans	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan	\$38,600	\$110,750	\$16,200	\$68,750			\$11,920	\$60,725
usfws	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit; Incidental Take Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$100,000	\$1,000,000	\$14,200	\$66,800	\$11,550	\$61,500		
faA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)					\$3,000	\$9,000		
STATE													
Agency	Jurisdicition	PermittApproval	Primary Regulated Areas	General Permititing Notes	Potential StudiesPlans								
NYS Public Service Commission Department of Public Service (NYSDPS)	Article VIII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Intervenor Fund payment expected to be $\$ 100,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans	\$600,000	\$3,100,000						
NYS Public Service Commission Department of Public Service (NYSDPS)	Part 102		Construction of a utility overhead transmission facility that will convey electric energy at 65 kV or higher for a distance of one mile or longer and are not subject to Article VII of the Public Service Law.	Report may include coordination or studies completed under other line items including: Visual assessment, SHPO determination, OPRHP consultation, Ecological Impacts Assessment Submit to the Commission for 60 -day notice period: if no response for a formal investigation project can proceed, if formal investigation ordered project modification may be required	Advantage-Disadvantage Analysis	\$13,000	\$60,000						
nysdec	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan								

NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)	\$11,200	\$38,000	\$11,200	\$38,000	\$11,200	\$38,000		
Any State or local government agency that issues permits or approvals	State Environmental Quality Review Act (SEQRA)	Environmental Assessment (EA) Determination of Significance	Projects not covered as a Type II Action (Note a project can not be segmented all phases/tasks must be considered in the review)	Most projects or activities proposed by a state agency, and all discretionary approvals (permits) from a NYS agency or local government, require an environmental impact assessment. SEQR requires the sponsoring or approving governmental body to identify and mitigate the significant environmental impacts of the activity it is proposing or permitting.	Includes Reports and Plans required for State and Federal Agency Permits, as well as, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan			\$10,000	\$500,000	\$10,000	\$500,000	\$10,000	\$10,000
nysdos	State Coastal Zone/ Management Areas	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coasta Zone; and consistency with Local Waterfront Revitalization Plans (LWRPS); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)		\$3,400	\$15,000						
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies	\$14,700	\$53,500	\$7,750	\$32,650	\$6,700	\$29,500		
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400	\$1,200	\$6,400	\$1,200	\$6,400		
$\begin{gathered} \text { NYSDOT/NY } \\ \text { SThruway } \\ \text { Authority/F } \\ \text { HWA } \end{gathered}$	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$69,000			\$17,000	\$69,000		
NYSOGS	State-owned Underwater Land	Request for Information	Projects includes use of NYS underwater lands	OGS Real Estate staff do respond to email inquiries to determine based on project location and scope if permit application is applicable.	Easement area survey (not included in costs)	\$1,200	\$6,400						
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee $=\$ 25$ plus $\$ 2,000,000$ additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$3,800	\$3,800	\$3,800	\$3,800				
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultura Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2 -yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000	\$11,000	\$24,000				

 Excluded cost: Mitigation or restoration for impact to regulated wetlands; agricultural land and tree clearing

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T011 - National Grid Moderate Power Transfer Solution

ENVIRONMENTAL MITIGATION ESTIMATE

	Offsite Wetland Mitigation*		Farmland**	
	Min.	Max.	Min.	Max.
Area	0 acres	0 acres	0.3 acres	0.6 acres
Cost/Acre	$\$ 60,000$	$\$ 120,000$	$\$ 503$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$
Total	$\$ 0$	$\$ 0$	$\$ 151$	$\$ 302$

TO11 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\$ 151$	$\$ 302$	$\$ 227$

*Assumes no offsite wetland mitigation since no clearing of NWI Forested/Shrub Wetland is proposed - all work within existing maintained/cleared ROWs; assumes timber matting impacts to emergent wetlands is considered temporary and restoration seeding costs are accounted for in construction costs
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 538 LF Matting Impacts to Active Agriculture Land by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

a) Cost Estimate is based on 2017 rates.

b) Construction Schedule is in accordance with the Developers proposed schedule - we have assumed continuous working with no breaks in the schedule.
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6×10 hour days).
e) We have assumed that pole weights include anchor bolts.
f) The Developer has assumed gravel work pads. During our ROW visit it was determined that matted work pads are required.
g) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies. h) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes.
i) We have assumed Contractor Mark Up (OH\&P) of 15\%
j) Assumes all environmental data and project details provided are accurate unless noted otherwise
k) Article 7 required for Segment 1 (excluding Grand Island work)
I) Part 102 Authorization is required for Grand Island if it is not included in the Article 7 scope. If Grand Island work is considered independently from Article 7, separate USACE, NYSDEC, SWPPP, NYSDOS, SHPO, and local permits and costs will apply.
m) Segment 1 USFWS T\&E Investigation assumes survey and potential incidental take with Habitat Conservation Plan. Minimum and maximum amounts represent variable coordination efforts
n) USFWS T\&E for segments 2 and 3 Assumes that $1 / 4$ of the total project route per segment will require field survey for T\&E (Segment $2-2.28$ miles, Segment 3-1.75 miles)
o) NEPA-Assumes no NEPA because Art VII (Segments 1) and SEQRA (Segments 2, 3, 4)
p)Article 7 Intervenor Fund payment expected to be \$100,000
q) SHPO-Assumes consultation and Phase 1A/1B archeological studies with field survey for 50% of project route (Segment $1-11.5$ miles, Segment 2 -
4.55 miles, Segment $3-3.5$ miles, Segment 4 - no survey)
r) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII or SEQRA review
s) SEQRA for Segments 2, 3 and 4 assumes applicant is not lead agent. Minimum costs assume FEAF Part I with no additional studies. Maximum assumes
an expanded EA. SEQRA for Segment 4 assumes minimum only costs.
t) Assumes no coordination with National Parks Service
u) NYSDOS - Assumes only Segment 1

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T011 - National Grid Moderate Power Transfer Solution
v) USACE wetland delineation totals assumed length of NWI wetland estimates on Permitting Summary Table (Segment 1 - 6.9 miles, Segment 2 - 0.62 miles, Segment 3 - no wetlands, Segment 4-0.22 miles). Assumes work group line segment length not duplicated. Assumes NYSDEC delineations overlap and are accounted for in USACE costing.
w) Assumes no permanent wetland impacts and no wetland mitigation required
z) Assumes no agricultural project impacts and no mitigation
aa) No tree survey or replanting required outside regulated wetlands areas
ab) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

ATTACHMENT B6

T012 - NATIONAL GRID

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate	TOTAL		Remarks
4.4	Angle \& Deadend Porcelain String (10 Disc Assembly)	384.00	Set	1,300	1,040	\$	2,340	\$	898,560	
4.5	Jumper Post Porcelain String (Assembly)	192.00	Set	500	400	\$	900	\$	172,800	
4.6	Miscellaneous Materials (Dampers, Grounding \& Signage)	36.20	Mile		30,000	\$	30,000	\$	1,086,000	Supply \& Install
4.7	FAA Lightings/ Marking Systems	30.00	Structure		15,000	\$	15,000	\$	450,000	Supply \& Install
5	New 36/37 Ayer Tap									
5.1	Remove 1.1 circuit miles of 400 MCM 19 -strand copper conductor (typical) on the 36 Tap	1.10	Mile		8,500	\$	8,500	\$	9,350	
5.2	Remove 1.1 circuit miles of 636 MCM 26/7 ACSR conductor (typical) on the 37 Tap	1.10	Mile		9,000	\$	9,000	\$	9,900	
5.3	Remove 2.2 circuit miles of $3 / 8^{\prime \prime} \times 7$ strand steel HS shieldwire	2.20	Mile		6,000	\$	6,000	\$	13,200	
5.4	Remove single circuit wood 3-pole deadend structures	2.00	Structure		5,000	\$	5,000	\$	10,000	
5.5	Remove single circuit lattice deadend towers	4.00	Structure		6,000	\$	6,000	\$	24,000	
5.6	Remove single circuit lattice suspension towers	15.00	Structure		5,500	\$	5,500	\$	82,500	
6	Lines Removal \& Reconfiguration of 38/39 Lines									
6.1	Remove 636 MCM 26/7 ACSR conductor (typical) on the 37 line	0.20	Mile		9,000	\$	9,000	\$	1,800	
6.2	Remove $3 / 8^{\prime \prime} \times 7$ strand steel HS shieldwire	0.20	Mile		6,000	\$	6,000	\$	1,200	
6.3	Remove single circuit wood 3-pole deadend structure	1.00	Structure		5,000	\$	5,000	\$	5,000	
6.4	Remove double circuit lattice suspension tower	1.00	Mile		8,000	\$	8,000	\$	8,000	
6.5	Remove double circuit suspension lattice flex tower	1.00	Mile		7,000	\$	7,000	\$	7,000	
6.6	Install 0.2 circuit miles of 1590 kcmil ACSR "FALCON" conductor on the 38 line	0.20	Mile	55,440	79,200	\$	134,640	\$	26,928	
6.7	Install 0.2 miles of $3 / 8^{\prime \prime} \times 7$ strand steel EHS shieldwire	0.20	Mile	7,920	15,840	\$	23,760	\$	4,752	
	Install 13 structures (12 deadend structures and 1 suspension structure:									
6.8	115kV (Type U-Single circuit steel 3-pole deadend structure)	6.00	Structure	70,000	40,000	\$	110,000	\$	660,000	Type U has been assumed for budgeting purposes
6.9	115 kV (Type R - Single circuit wood davit arm suspension structure	1.00	Structure	5,000	20,000	\$	25,000	\$	25,000	
6.10	Allowance for all hardware and other accessories for 115 kV structures	1.00	Sum	100,000	100,000	\$	200,000	\$	200,000	
	Install 25 concrete caisson foundations for 12 structures and install 1 direct embedment hole for 1 structure:									
6.11	Concrete caisson foundations -5 feet diameter, depth of 28 feet for Type U (18 Nos)	440.00	CY		1,500	\$	1,500	\$	660,000	Supply \& Install
6.12	Concrete caisson foundations - 8 feet diameter, depth of 38 feet for Type W (4 Nos)	339.71	CY		1,500	\$	1,500	\$	509,565	Supply \& Install
6.13	Concrete caisson foundation - 6 feet diameter, depth of 25 feet for Type V (1 No)	31.43	CY		1,500	\$	1,500	\$	47,145	Supply \& Install
6.14	Concrete caisson foundation-6 feet diameter, depth of 31 feet for Type Q (1 No)	38.97	CY		1,500	\$	1,500	\$	58,455	Supply \& Install
6.15	Direct embedment hole - 3 feet diameter, embedment depth of 14 feet for Type R	1.00	Structure		25,000	\$	25,000	\$	25,000	Supply \& Install
6.16	Install approximately two 0.1 circuit-mile section of underground cable in a new manhole and duct system.	1.00	Sum		600,000	\$	600,000	\$	600,000	Supply \& Install
6.17	Replace approximately two 0.2 circuit-mile section of underground cable on the existing circuits.	1.00	Sum		100,000	\$	100,000	\$	100,000	Supply \& Install
7	Maple Road Substation to proposed new substation located near Park Club Lane									
7.1	Remove 400 MCM 19-strand copper conductor (typical) on the 91 line	2.00	Mile		\$ 8,500	\$	8,500	\$	17,000	
7.2	Remove 400 MCM 19-strand copper conductor (typical) on the 92 line	2.00	Mile		8,500	\$	8,500	\$	17,000	
7.3	Remove $3 / 8{ }^{\prime \prime} \times 7$ strand steel HS shieldwire	4.00	Mile		6,000	\$	6,000	\$	24,000	
	Remove 64 structures:									
7.4	Remove double circuit lattice deadend towers	9.00	Structure		6,000	\$	6,000	\$	54,000	
7.5	Remove double circuit lattice suspension towers	42.00	Structure		6,000	\$	6,000	\$	252,000	
7.6	Remove single circuit wood monopole suspension structures	7.00	Structure		6,000	\$	6,000	\$	42,000	
7.7	Remove single circuit 3-pole wood deadend structures	5.00	Structure		7,500	\$	7,500	\$	37,500	
7.8	Remove single circuit 2-pole wood deadend structure	1.00	Structure		6,500	\$	6,500	\$	6,500	

lient: NYISO

roject: Western Transmission Project Evaluatio

Document No: To12 - National Grid High Power Transfer Solution
GEED
substation engineming
COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Unit te		TAL	Remarks
9.15	Misc. Works / Connections	1.00	Sum		\$ 5,000	\$	5,000	\$	5,000	
9.16	Fencings, Restorations and Security etc.	1.00	Sum		\$ 150,000	\$	150,000	\$	150,000	
WG C - TOTAL SUPPLY \& INSTALL:								\$	1,075,000	
SEGMENT 2										
WG-D1 REBUILD \& RE-CONDUCTOR										

 in support of the project. Reconductoring of the taps is not required except for the American Standard Tap on the 182 line.

COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		TOTAL		Remarks
11.3	Remove 11 double circuit steel suspension towers	11.00	Structure		\$	14,000	\$	14,000	\$	154,000	
11.4	Remove 10 double circuit suspension flex towers	10.00	Structure		\$	13,000	\$	13,000	\$	130,000	
11.5	Remove 6 H -Frame wood suspension structures	6.00	Structure		\$	10,000	\$	10,000	\$	60,000	
11.6	Remove 1172 pole-wood suspension structures	117.00	Structure		\$	8,000	\$	8,000	\$	936,000	
	Line 180/181 - Remove 95 structures (Ellicott Junction to Urban Switch)										
	Remove 58 structures - Ellicott Junction to Pack Club Lane Substation:										
	Remove 18 deadend structures:										
11.8	Remove 14 double circuit lattice deadend towers	14.00	Structure		\$	12,000	\$	12,000	\$	168,000	
11.9	Remove 4 double circuit single pole steel deadend structures	4.00	Structure		\$	8,000	\$	8,000	\$	32,000	
	Remove 40 suspension structures:										
11.10	Remove 38 double circuit flex towers suspension structures	38.00	Structure		\$	6,600	\$	6,600	\$	250,800	
11.11	Remove 1 H -frame suspension structure	1.00	Structure		\$	6,000	\$	6,000	\$	6,000	
11.12	Remove 1 double circuit single pole steel suspension structure	1.00	Structure		\$	12,000	\$	12,000	\$	12,000	
	Remove 37 structures - Park Club Lane Substation to Urban Switch:										
11.13	Remove 10 double circuit lattice deadend towers	10.00	Structure		\$	12,000	\$	12,000	\$	120,000	
	Remove 27 suspension structures:										
11.14	Remove 2 double circuit steel towers suspension structures	2.00	Structure		\$	66,000	\$	66,000	\$	132,000	
11.15	Remove 25 double circuit flex towers suspension structures	25.00	Structure		\$	66,000	\$	66,000	\$	1,650,000	
	Line 182/92-Remove 96 structures (Ellicott Junction to Urban Switch)										
	Remove 58 structures - Ellicott Junction to Pack Club Lane Substation										
	Remove 20 deadend structures										
11.15	Remove 13 double circuit lattice deadend towers	13.00	Structure		\$	12,000	\$	12,000	\$	156,000	
11.16	Remove 1 single pole wood deadend structure	1.00	Structure		\$	18,000	\$	18,000	\$	18,000	
11.17	Remove 5 double circuit steel pole deadend structures	5.00	Structure		\$	14,000	\$	14,000	\$	70,000	
11.18	Remove 1 H -frame wood deadend structure	1.00	Structure		\$	6,600	\$	6,600	\$	6,600	
	Remove 38 suspension structures:										
11.19	Remove 29 double circuit suspension flex towers	29.00	Structure		\$	14,000	\$	14,000	\$	406,000	
11.20	Remove 1 double circuit steel suspension towers	1.00	Structure		\$	6,600	\$	6,600	\$	6,600	
11.21	Remove 8 2-pole wood suspension structures	8.00	Structure		\$	8,000	\$	8,000	\$	64,000	
	Remove 38 structures - Park Club Lane Substation to Urban Switch:										
11.22	Remove 10 double circuit lattice deadend towers	10.00	Structure		\$	12,000	\$	12,000	\$	120,000	
	Remove 27 suspension structures:										
11.23	Remove 2 double circuit steel towers suspension structures	2.00	Structure		\$	6,600	\$	6,600	\$	13,200	
11.24	Remove 25 double circuit flex towers suspension structures	25.00	Structure		\$	6,600	\$	6,600	\$	165,000	
11.25	Remove 1 switch structure (Urban 369)	1.00	Structure		\$	6,600	\$	6,600	\$	6,600	
	Line 182 - Remove 12 structures (Near Urban Switch):										
	Remove 4 deadend structures:										
11.26	Remove 2 double circuit lattice deadend towers	2.00	Structure		\$	16,000	\$	16,000	\$	32,000	
11.27	Remove 23 -pole wood deadend structures	2.00	Structure		\$	8,000	\$	8,000	\$	16,000	
	Remove 8 suspension structures:										
11.28	Remove 3 double circuit steel suspension towers	3.00	Structure		\$	8,000	\$	8,000	\$	24,000	
11.29	Remove 3 double circuit suspension flex towers	3.00	Structure		\$	6,600	\$	6,600	\$	19,800	
11.30	Remove 2 H -frame suspension structures	2.00	Structure		\$	6,000	\$	6,000	\$	12,000	
	Line 182/54-Remove 45 structures (Urban Switch to Gardenville Substation):										
11.31	Remove 12 double circuit lattice deadend towers	12.00	Structure		\$	12,000	\$	12,000	\$	144,000	
	Remove 33 suspension structures:										
11.32	Remove 1 double circuit steel suspension tower	1.00	Structure		\$	6,600	\$	6,600	\$	6,600	
11.33	Remove 25 double circuit suspension flex towers:	25.00	Structure		\$	7,000	\$	7,000	\$	175,000	
11.34	Remove 7 2-pole wood suspension structures	7.00	Structure		\$	8,000	\$	8,000	\$	56,000	

Client: NYISO

roject: Western Transmission Project Evaluatio

ubject: Cost Estimate
$\rightarrow 5 B I$

COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	 Equipment Rate		Total Unit Rate		TOTAL	Remarks
	Line 180/704 - Remove 54 structures (Urban Switch to Gardenville Substation):									
11.35	Remove 21 double circuit lattice deadend towers	21.00	Structure		\$ 12,000	\$	12,000	\$	252,000	
11.36	Remove 33 suspension structures									
11.37	Remove 3 double circuit steel towers suspension structures	3.00	Structure		\$ 6,600	\$	6,600	\$	19,800	
11.38	Remove 30 double circuit flex towers suspension structures	30.00	Structure		6,600	\$	6,600	\$	198,000	
12	Wire Installation									
	Line 181 - Install approximately 18.8 circuit miles, 115kV (Packard Substation to Park Club Lane Substation)									
12.1	Install 18.8 circuit miles of 1590 kcmil ACSR "FALCON" conductor	18.80	Mile	55,440	79,200	\$	134,640	\$	2,531,232	
12.2	Install 18.8 miles of $3 / 8 \times \times 7$ strand EHS steel shieldwire	18.80	Mile	7,920	15,840	\$	23,760	\$	446,688	
12.3	Conductor attachment assembly at Packard Substation	1.00	Lot		30,000	\$	30,000	\$	30,000	
	Line 182/180 - Install approximately 11.2 circuit miles, 115 kV (Ellicott Junction to Park Club Lane Substation)									
	Install 11.2 circuit miles of 1590 kcmil ACSR "FALCON" conductor:									
12.4	Install 5.6 circuit miles of 1590 kcmil ACSR "FALCON" conductor	5.60	Mile	\$ 55,440	79,200	\$	134,640	\$	753,984	
12.5	Install 5.6 circuit miles of 1590 kcmil ACSR "FALCON" conductor-Line 180	5.60	Mile	55,440	79,200	\$	134,640	\$	753,984	
12.6	Install 11.2 miles of $3 / 8^{\prime \prime} \times 7$ strand EHS steel shieldwire	11.20	Mile	\$ 7 7,920	15,840	\$	23,760	\$	266,112	
12.7	Conductor attachment assembly at Park Club Lane Substation	1.00	Lot		30,000	\$	30,000	\$	30,000	
	Line 181/182 - Install approximately 6.4 circuit miles, 115kV (Park Club Lane Substation to Urban Switch)									
	Install 6.4 circuit miles of 1590 kcmil ACSR "FALCON" conductor:									
12.8	Install 3.2 circuit miles of 1590 kcmil ACSR "FALCON" conductor- Line 181	3.20	Mile	55,440	79,200	\$	134,640	\$	430,848	
12.9	Install 3.2 circuit miles of 1590 kcmil ACSR "FALCON" conductor- Line 182	3.20	Mile	55,440	79,200	\$	134,640	\$	430,848	
12.10	Install 6.4 miles of $3 / 8^{\prime \prime} \times 7$ strand EHS steel shieldwire	6.40	Mile	7,920	15,840	\$	23,760	\$	152,064	
12.11	Conductor attachment assembly at Urban Switch	1.00	Lot		30,000	\$	30,000	\$	30,000	
	Line 182/54-Install approximately 8.2 circuit miles, 115 kV (Urban Switch to Gardenville Substation):									
	Install 8.2 circuit miles of 1590 kcmil ACSR "FALCON" conductor:									
12.12	Install 4.5 circuit miles of 1590 kcmil ACSR "FALCON" conductor- Line 182	4.50	Mile	55,440	79,200	\$	134,640	\$	605,880	
12.13	Install 3.7 circuit miles of 1590 kcmil ACSR "FALCON" conductor-Line 54	3.70	Mile	55,440	79,200	\$	134,640	\$	498,168	
12.14	Install 8.2 miles of $3 / 8^{\prime \prime} \times 7$ strand EHS steel shieldwire	8.20	Mile	7,920	15,840	\$	23,760	\$	194,832	
12.15	Conductor attachment assembly at Gardenville Substation	1.00	Lot		30,000	\$	30,000	\$	30,000	
	Line 182/54 - Install approximately 0.04 circuit miles, $115 \mathrm{kV} / 115 \mathrm{kV}$ (American Standard Tap):									
	Install 0.04 circuit miles of 1590 kcmil ACSR "FALCON" conductor									
12.16	Install 0.02 circuit miles of 1590 kcmil ACSR "FALCON" Line 182 Tap to American Standard Tap	0.02	Mile	\$ 55,440	\$ 79,200	\$	134,640	\$	2,693	
12.17	Install 0.02 circuit miles of 1590 kcmil ACSR "FALCON" - Line 54 Tap to American Standard Tap	0.02	Mile	\$ 55,440	79,200	\$	134,640	\$	2,693	
12.18	Conductor attachment assembly at American Standard Tap	1.00	Lot		10,000	\$	10,000	\$	10,000	
12.19	OPGW-7 miles and accessories	7.00	Mile	\$ 21,632	29,220	\$	50,852	\$	355,964	Includes accessories, splicing \& testing
13	Insulator \& Hardware Work									
	Group D1:									
13.1	Tangent - Porcelain String (10 Discs Assembly)	576.00	Set	\$ 900	720	\$	1,620	\$	933,120	
13.2	Angle \& Deadend Porcelain String (10 Disc Assembly)	1,020.00	Set	1,300	1,040	\$	2,340	\$	2,386,800	
13.3	Jumper Post Porcelain String (Assembly)	510.00	Set	500	400	\$	900	\$	459,000	
14	Install Structure Work:									
	Line 181 - Install approximately 240 structures (60 deadends, 180 suspensions) :									
	(Packard Substation to Park Club Lane Substation)									
	Install 180 structures - Packard Substation to Ellicott Junction									
14.1	Install 37 structures (Type S - Single circuit davit arm steel deadend)	37.00	Structure	\$ 50,000	\$ 45,000	\$	95,000	\$	3,515,000	
14.2	Install 143 structures (Type R-Single circuit davit arm wood suspension)	143.00	Structure	\$ 3,500	\$ 26,000	\$	29,500	\$	4,218,500	
	Install 60 structures - Ellicott Junction to Pack Club Lane Substation									
14.3	Install 23 structures (Type S - Single circuit davit arm steel deadend)	23.00	Structure	\$ 47,000	\$ 26,000	\$	73,000	\$	1,679,000	
14.4	Install 37 structures (Type R-Single circuit davit arm wood suspension)	37.00	Structure	\$ 3,500	26,000	\$	29,500	\$	1,091,500	

client: NYISO

roject: Western Transmission Project Evaluatio

ubject: Cost Estimate
$9 E B I$
Substation engineering
COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate		TOTAL	Remarks
	Line 182/180 - Install approximately 60 structures (26 deadends, 34 suspensions), 115kV (Ellicott Junction to Pack Club Lane Substation)								
14.5	Install 1 structure (Type S- Single circuit davit arm steel deadend)	15.00	Structure	47,000	26,000	73,000	\$	1,095,000	
14.6	Install 25 structures (Type Q - Double circuit davit arm steel deadend)	25.00	Structure	29,700	26,730	56,430	\$	1,410,750	
14.7	Install 34 structures (Type P - Double circuit davit arm steel suspension)	34.00	Structure	21,000	26,000	47,000	\$	1,598,000	
	Line 181/182 - Install approximately 39 structures (14 deadends, 24 suspensions, 1 Hframe deadend switch) (Park Club Lane Substation to Urban Switch):								
14.8	Install 14 structures (Type Q - Double circuit davit arm steel deadend)	14.00	Structure	29,700	\$ 26,730	56,430	\$	790,020	
14.9	Install 24 structures (Type P - Double circuit davit arm steel suspension)	47.00	Structure	\$ 21,000	18,900	39,900	\$	1,875,300	
14.10	Install 1 --frame deadend switch structure and switch (Urban 369) (Type T-H-frame deadend switch)	1.00	Structure	45,000	40,500	85,500	\$	85,500	
	Line 182/54 - Install approximately 53 structures (15 deadends, 38 suspension tangents) (Urban Switch to Gardenville Substation)								
14.11	Install 15 structures (Type Q - Double circuit davit arm steel deadend)	15.00	Structure	29,700	26,730	56,430	\$	846,450	
14.12	Install 38 structures (Type P - Double circuit davit arm steel suspension)	38.00	Structure	21,000	18,900	39,900	\$	1,516,200	
15	Install Foundation Work:								
	Line 181 - Install 60 drilled shaft foundations and 180 direct embed holes (Packard Substation to Park Club Lane Substation)								
	Install 60 drilled shaft foundations:								
15.1	Install 47 drilled shaft -6 feet diameter, depth of 23 feet	47.00	Structure		27,000	27,000	\$	1,269,000	Supply and Install
15.2	Type S-Single circuit davit arm steel tangent deadend - foundation accessories, misc. works	47.00	Structure		13,000	13,000	\$	611,000	
15.3	Install 13 drilled shaft - 8 feet diameter, depth of 37 feet - foundation accessories, misc. works	13.00	Structure		30,000	30,000	\$	390,000	
15.4	Type S-S Single circuit davit arm 90° line angle deadend)	13.00	Structure		13,000	\$ 13,000	\$	169,000	
15.5	Install 180 direct embed holes - embedment depth of 14 feet	180.00	Structure		16,000	16,000	\$	2,880,000	
15.6	Type R - Single circuit davit arm wood suspension - - foundation accessories, misc. works	180.00	Structure		13,000	13,000	\$	2,340,000	
	Line 182/180 - Install 26 drilled shaft foundations and 34 direct embed holes (Ellicott Junction to Pack Club Lane Substation):								
	Install 26 drilled shaft foundations:								
15.7	Install 1 drilled shaft - 6 feet diameter, depth of 23 feet	1.00	Structure		27,000	27,000	\$	27,000	
15.8	Type S - Single circuit davit arm steel tangent deadend - foundation accessories, misc. works	1.00	Structure	18,000	13,000	31,000	\$	31,000	
15.9	Install 24 drilled shaft -6 feet diameter, depth of 31 feet	24.00	Structure		28,000	28,000	\$	672,000	
15.10	Type Q - Double circuit davit arm steel tangent deadend - foundation accessories, misc. works	24.00	Structure	29,700	13,000	42,700	\$	1,024,800	
15.11	Install 1 drilled shaft -8 feet diameter, depth of 37 feet	1.00	Structure		35,000	35,000	\$	35,000	
15.12	Type Q - Double circuit davit arm 90° line angle deadend - foundation accessories, misc. works	1.00	Structure	29,700	13,000	\$ 42,700	\$	42,700	
15.13	Install 34 direct embed holes - embedment depth of 20 feet	34.00	Structure		\$ 18,000	\$ 18,000	\$	612,000	Supply and Install
15.14	Type P - Double circuit davit arm steel suspension - foundation accessories, misc. works	34.00	Structure		13,000	13,000	\$	442,000	
	Line 181/182 - Install16 drilled shaft foundations and 24 direct embed holes (Park Club Lane Substation to Urban Switch):								
	Install 16 drilled shaft foundations:								
15.15	Install 13 drilled shaft -6 feet diameter, depth of 23 feet	13.00	structure		\$ 27,000	\$ 27,000	\$	351,000	
15.16	Type Q - Double circuit davit arm steel tangent deadend - foundation accessories, misc. works	13.00	structure	29,700	13,000	42,700	\$	555,100	
15.17	Install 1 drilled shaft - 8 feet diameter, depth of 37 feet	1.00	structure		30,000	\$ 30,000	\$	30,000	Supply and Install
15.18	Type Q - Double circuit davit arm 90° angle deadend - foundation accessories, misc. works	1.00	structure	29,700	\$ 13,000	42,700	\$	42,700	
15.19	Install 2 drilled shaft -5 feet diameter, depth of 16 feet	2.00	structure		16,000	16,000	\$	32,000	Supply and Install
15.20	Type T-H-frame deadend switch - foundation accessories, misc. works	1.00	structure		15,000	15,000	\$	15,000	Supply and Install
15.21	Install 24 direct embed holes - embedment depth of 20 feet	24.00	structure	\$ 9,000	\$ 18,000	\$ 27,000	\$	648,000	
15.22	Type P - Double circuit davit arm steel suspension - foundation accessories, misc. works	26.00	structure	9,000	13,000	22,000	\$	572,000	
	Line 182/54 - Install 15 drilled shaft foundations and 38 direct embed holes (Urban Switch to Gardenville Substation)								
15.23	Install 15 drilled shaft foundations								

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate		TOTAL		Remarks
15.24	Install 14 drilled shaft -6 feet diameter, depth of 31 feet	14.00	structure			\$	36,000	\$	36,000	\$	504,000	Supply and Install
15.25	Type Q - Double circuit davit arm steel tangent deadend - foundation accessories, misc. works	14.00	structure	\$	29,700	\$	13,000	\$	42,700	\$	597,800	
15.26	Install 1 drilled shaft - 8 feet diameter, depth of 38 feet	1.00	structure			\$	38,000	\$	38,000	\$	38,000	Supply and Install
15.27	Type Q - Double circuit davit arm 90° angle deadend - foundation accessories, misc. works	1.00	structure	\$	29,700	\$	13,000	\$	42,700	\$	42,700	
15.28	Install 38 direct embed holes - embedment depth of 20 feet	38.00	structure			\$	18,000	\$	18,000	\$	684,000	
15.29	Type P - Double circuit davit arm steel suspension - foundation accessories, misc. works	38.00	structure	\$	9,000	\$	13,000	\$	22,000	\$	836,000	
	Line Switches											
15.3	Supply and Install line switch for WG-D1	1.00	Unit			\$	100,000	\$	100,000	\$	100,000	Supply and Install
WG D1- TOTAL SUPPLY \& INSTALL:										\$	55,276,810	
WG-E NEW BUS BREAKER AT PACKARD STATION												
16	New Bus Breaker at Packard Station											
16.1	GCB 115kV - 3000A, 63kA	1.00	Unit			\$	150,000	\$	150,000	\$	150,000	Supply \& Install
16.2	115LB1WV1 1 Way Loadbreak Switch Vertical (Located at Structure T and includes the pole)	1.00	Structure			\$	250,000	\$	250,000	\$	250,000	
16.3	Relocate 1 No. existing 115kV 3000A disconnect switch 343 to the right of tie breaker R342	1.00	Sum			\$	20,000	\$	20,000	\$	20,000	
16.4	Install one new 115 kV 123 kV , $63 \mathrm{kA} \mathrm{3000A} \mathrm{SF6} \mathrm{bus} \mathrm{tie} \mathrm{breaker} \mathrm{in} \mathrm{series} \mathrm{with} \mathrm{existing} \mathrm{115kV} \mathrm{Areva} \mathrm{bus} \mathrm{tie} \mathrm{R342} \mathrm{t}$	1.00	Sum	\$	150,000	\$	50,000	\$	200,000	\$	200,000	
16.5	Install new cable and conduit between new tie breaker and control house and associated shield cables	1.00	Sum			\$	35,000	\$	35,000	\$	35,000	Supply \& Install
16.6	Install new set of AL power conductors and AL four hole pad connectors	1.00	Sum			\$	12,000	\$	12,000	\$	12,000	
16.7	Install new AL bus and a 5" upper bus extension to existing breaker R2103 and associated disconnect switches	1.00	Sum			\$	18,000	\$	18,000	\$	18,000	
16.8	Structures for Switch and Bus Support	1.00	Sum			\$	30,000	\$	30,000	\$	30,000	
16.9	Relocate 115kV disconnect switch 2104 and R2103	1.00	Sum			\$	15,000	\$	15,000	\$	15,000	
16.10	Grounding all new electrical equipment	1.00	Sum			\$	10,000	\$	10,000	\$	10,000	
16.11	Reconnect, control and integration, test and commissioning	1.00	Sum			\$	20,000	\$	20,000	\$	20,000	
16.12	Supply and Install new 115 kV switch R2101	1.00	Sum			\$	100,000	\$	100,000	\$	100,000	
16.13	Allowance for all secondary electrical works including DC power, AC power and system protection	1.00	Sum			\$	20,000	\$	20,000	\$	20,000	
WG-E - TOTAL SUPPLY \& INSTALL:										\$	880,000	
WG-F REPLACE THERMALLY LIMITING EQUIPMENT AT PACKARD SUBSTATION FOR LINE 181												
17	Replace Thermally Limiting Equipment at Packard Substation for Line 181											
17.1	Conductor \& insulator replacement	1.00	Sum			\$	200,000	\$	200,000	\$	200,000	Supply \& Install
WG-F - TOTAL SUPPLY \& INSTALL:										\$	200,000	
WG-G NEW 115kV SWITCHING STATION												
18	Supply and Install new 115kV Switching Station near Park Club Lane											
	Structures											
18.1	Angles Bus Support-3 Phase	7.00	Unit	\$	5,000	\$	10,000	\$	15,000	\$	105,000	
18.2	Sta. SVC Stand- 3 Phases	1.00	Unit	\$	15,000	\$	20,000	\$	35,000	\$	35,000	
18.3	Switch Stands (assume future SW Stands use bus supports)	18.00	Unit	\$	25,000	\$	30,000	\$	55,000	\$	990,000	
18.4	Misc. Structures	1.00	Sum			\$	385,000	\$	385,000	\$	385,000	
18.5	Line Terminal (shared columns)	3.00	Unit	\$	18,000	\$	22,000	\$	40,000	\$	120,000	
18.6	Lightning Masts	8.00	Unit	\$	45,000	\$	25,000	\$	70,000	\$	560,000	
	Equipment		Unit									
18.7	115 kV Switches	16.00	Unit			\$	100,000	\$	100,000	\$	1,600,000	
18.8	115kV Line Switches	5.00	Unit			\$	100,000	\$	100,000	\$	500,000	
18.9	115 kV Instrument Transformers	1.00	Sum			\$	545,000	\$	545,000	\$	545,000	
18.10	115 kV Circuit Breakers	8.00	Unit	\$	150,000	\$	50,000	\$	200,000	\$	1,600,000	
18.11	115kV Sta SVC-1Phase	3.00	Unit	\$	50,000	\$	18,000	\$	68,000	\$	204,000	
18.12	Arrestor	15.00	Unit	\$	50,000	\$	25,000	\$	75,000	\$	1,125,000	
18.13	Arrestor Sta SVC	3.00	Unit	S	75,000	\$	25,000	\$	100,000	\$	300,000	
	Foundations											
18.14	Grading, Civils, Access Works, Ground Grid, Conduit	1.00	Sum			\$	325,000	\$	325,000	\$	325,000	Supply \& Install
18.15	Foundations for Low Profile Structures	68.00	Unit			\$	5,000	\$	5,000	\$	340,000	

Client: NYISO

roject: Western Transmission Project Evaluatio

Subject: Western Trans
Document No: T012 - National Grid High Power Transfer Solution
EEED

COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		TOTAL		Remarks
18.16	Caisson DE Structures	10.00	Structure		\$	75,000	\$	75,000	\$	750,000	
18.17	115 kV Circuit Breaker Pad	8.00	Sum		\$	10,000	\$	10,000	\$	80,000	
18.18	Pier Lighting Mast	8.00	Sum		\$	5,000	\$	5,000	\$	40,000	
	Control House										
18.19	Control House $35^{\prime} \times 65^{\prime}$ (includes supply \& install and foundations)	1.00	Sum	\$ 650,000	\$	200,000	\$	850,000	\$	850,000	Supply \& Install (includes foundations)
	Protection, Telecom, Connections, Misc.										
18.20	Cable and Wire	1.00	Sum		\$	25,000	\$	25,000	\$	25,000	Supply \& Install
18.21	Protection, Telecom and Metering Equipment (Panels)	23.00	Sum		\$	30,000	\$	30,000	\$	690,000	Supply \& Install
WG-G - TOT	SUPPLY \& INSTALL:								\$	11,169,000	
SEGMENT 3											
WG-H PACKA	-HUNTLEY \& WALCK-HUNTLEY DOUBLE CIRCUIT LINE WORKS										
Description of	Work: Re-conductor 18.2 circuit miles of the Packard-Huntley and Walck - Huntley Double Circuit Line between star	es 140 and H	Substation.	includes foundation	,	ure work		lacement		fittings and	hardware.
19	Wire Removal Work										
	Line 130/133-Remove approximately 18.2 circuit miles, $115 \mathrm{kV} / 69 \mathrm{kV}$ (Packard Structures 140 and -Huntley Subs										
19.1	Remove 18.2 circuit miles (typically 350 MCM 19 strand Copper)	18.20	Mile		\$	15,000	\$	15,000	\$	273,000	
19.2	Transfer existing $3 / 8^{\prime \prime} \times 7$ steel EHS shieldwire on 6 structures	26.60	Mile		\$	24,000	\$	24,000	\$	638,400	
	Structure Removal Work										
	Line 130/133-Remove 7 double circuit steel deadend lattice towers, $115 \mathrm{kV} / 69 \mathrm{kV}$ (Packard Structures 140 and	tley Substation									
	Remove 11 deadend structures:										Supply \& Install
19.3	Remove 7 double circuit lattice deadend towers	7.00	Structure		\$	12,000	\$	12,000	\$	84,000	Supply 2 Instar
19.4	Remove 4 single pole wood deadend structures	4.00	Structure		\$	6,000	\$	6,000	\$	24,000	
19.5	Remove 1 double circuit steel suspension flex tower	1.00	Structure		\$	14,000	\$	14,000	\$	14,000	
	Structure Re-inforce Work										
19.6	Install 8 concrete foundation caissons	8.00	Structure		\$	150,000	S	150,000	\$	1,200,000	
19.7	Install 4 wood 3-pole deadend pole structures in kind	4.00	Structure	25,000	\$	25,000	\$	50,000	\$	200,000	
19.8	Replace seven double circuit steel deadend lattice towers with double circuit steel deadend single pole structures on concrete foundations.	7.00	Structure		\$	85,000	\$	85,000	\$	595,000	Supply \& Install
19.9	Replace one double circuit steel suspension flex tower with double circuit steel deadend single pole structure on concrete foundation.	1.00	Structure		\$	85,000	\$	85,000	\$	85,000	
19.10	Replace steel members on (16) deadend lattice towers	16.00	Structure		\$	10,000	\$	10,000	\$	160,000	
19.11	Replace hardware on (30) double circuit deadend structures	30.00	Structure		\$	4,000	\$	4,000	\$	120,000	
19.12	Install longitudinal guys on two flex towers	2.00	Structure		\$	25,000	\$	25,000	\$	50,000	
19.13	Install (4) temporary wood single pole deadend structures at every deadend structure to be replaced	44.00	Unit		\$	15,000	\$	15,000	\$	660,000	
	Wire Installation										
19.14	Line 130/133- Reconductoring, 115kV/69kV (Packard Structures 140 and -Huntley Substation):										
19.15	Transfer 4 double circuit miles of 1590 kcmil ACSR "FALCON" conductor	4.00	Mile	\$ 28,000	\$	40,000	S	68,000	\$	272,000	
19.16	Install 18.2 miles of $3 / 8^{\prime \prime} \times 7$ strand EHS steel shieldwire	18.20	Mile	\$ 7,920	\$	15,840	\$	23,760	\$	432,432	
19.17	Miscellaneous assemblies	1.00	Lot		\$	30,000	\$	30,000	\$	30,000	
19.18	OPGW-18.2 miles and accessories	18.20	Mile	21,632	\$	29,220	\$	50,852	\$	925,506	Supply \& Install, Splicing, Accessories etc.
	Insulator \& Hardware Work										
19.19	Tangent - Porcelain String (10 Discs Assembly)	390.00	Set	900	\$	720	\$	1,620	\$	631,800	
19.20	Angle \& Deadend Porcelain String (10 Disc Assembly)	192.00	Set	1,300	\$	1,040	\$	2,340	\$	449,280	
19.21	Jumper Post Porcelain String (Assembly)	81.00	Set	500	\$	400	\$	900	\$	72,900	
19.22	Shieldwire Suspension Clamps	32.00	Set	500	\$	400	\$	900	\$	28,800	
19.23	Shieldwire DE Clamps	80.00	Set	\$ 800	\$	640	\$	1,440	\$	115,200	
19.24	Miscellaneous materials, dampers, grounding etc.	1.00	Sum		\$	200,000	\$	200,000	\$	200,000	

COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		TOTAL	Remarks
WG-N - LINE WORK 101, 102, 103, 104										
24	Upgrade ampacity of Lines 101, 102, 103, 104									
24.1	Replace Thermally Limiting Equipment at Lockport Station for Lines 101, 102	1.00	Sum		\$ 500,000	\$	500,000	\$	500,000	Supply \& Install
WG-N TOTAL SUPPLY \& INSTALL:								\$	500,000	
SEGMENT 6										
WG-O - NYSEG/NYPA/N GRID - ELIMINATE DOUBLE CIRCUIT CONTINGENCY FOR LINE 61/64										
25	Eliminate Double Circuit Contingency for Line 61/64									
25.1	Install "A" Delta Davit Arm Steel Suspension 230kV	1.00	Structure		\$ 750,000	\$	750,000	\$	750,000	Supply \& Install
25.2	Install "B" Davit Arm Steel DE 230kV	3.00	Structure							
25.3	Conductoring 0.70 circuit miles of 1590 ACSR for the 64 Line.	8,500.00	Ft	\$	\$ 8	\$	13	\$	110,500	
25.4	Replace OGW overhead ground wire 5/8" Dia (230kV)	2.00	Mile	\$ 7,920	15,840	\$	23,760	S	47,520	
25.5	Install ${ }^{\prime}$ ' Dia $\times 26^{\prime}$ deep reinforced concrete foundation caisson (cylindrical) Structure Type S/Q Angle DE (3 Nos)	50.00	CY		1,500	\$	1,500	\$	75,000	Supply \& Install
25.6	Direct embedment foundation 72 " dia $\times 20^{\prime}$ deep	1.00	EA		50,000	\$	50,000	\$	50,000	Supply \& Install
25.7	96" Dia Hole Rock Coring/ Removal	15.00	LF		\$ 6,400	\$	6,400	\$	96,000	Supply \& Install
	Group O-61/64, P1-181:									
25.8	Tangent - Porcelain String (10 Discs Assembly)	159.00	Set	\$ 900	\$ 720	\$	1,620	\$	257,580	
25.9	Angle \& Deadend Porcelain String (10 Disc Assembly)	66.00	Set	\$ 1,300	1,040	\$	2,340	S	154,440	
25.10	Jumper Post Porcelain String (Assembly)	33.00	Set	\$ 500	\$ 400	\$	900	\$	29,700	
WG-O TOTAL SUPPLY \& INSTALL:								\$	1,570,740	
WG-P1 - IDENTIFIED 181 LINE WORK (URBAN SWITCH TO ERIE, NYSEG)										
26	Foundation Works:									
26.1	Direct Embed for H Frame's	52.00	Structure		\$ 15,000	\$	15,000	\$	780,000	Supply \& Install
26.2	Caissons for Dead End Structures	8.00	Structure		55,000	\$	55,000	\$	440,000	Supply \& Install
27	Structure Work:									
27.1	Install H Frames	52.00	Structure	\$ 3,500	\$ 26,000	\$	29,500	\$	1,534,000	
27.2	Install Dead Ends	8.00	Structure	\$ 42,000	\$ 37,800	\$	79,800	S	638,400	
28	Wire work:									
28.1	1113 kcmil installation	114,000.00	Ft	\$ 4	\$ 5	\$	9	\$	969,000	
28.2	Install double shield wire	75,600.00	Ft	\$ 2	\$	\$	5	\$	340,200	
29	Insulators \& Hardware Work									
29.1	Suspension Sets	156.00	Ea.	\$ 900	\$ 720	\$	1,620	\$	252,720	
29.2	Angle / Deadend Sets	48.00	Ea.	\$ 1,300	\$ 11,040	\$	2,340	\$	112,320	
29.3	Shieldwire Fittings / Misc. Works	1.00	Sum		\$ 300,000	\$	300,000	\$	300,000	Supply \& Install
WG-P1 TOTAL SUPPLY \& INSTALL:								\$	5,366,640	
WG-Q - REPLACE THERMALLY LIMITING EQUIPMENT AT ERIE STN FOR LINE 181										
30	Replace Thermally Limiting Equipment at Erie Station for Line 181 (NYSEG 922 Line)									
30.1	Replacing one 115kV circuit breaker	1.00	Unit	150,000	\$ 50,000	S	200,000	\$	200,000	
30.2	Instrument Transformers	1.00	Unit		\$ 200,000	\$	200,000	\$	200,000	
30.3	New disconnect switches	1.00	Lot		\$ 100,000	\$	100,000	\$	100,000	
30.4	New A\&B relay packages	1.00	Lot		\$ 50,000	\$	50,000	\$	50,000	
30.5	Conductor and insulator replacement	1.00	Lot		\$ 200,000	\$	200,000	\$	200,000	
30.6	New cabling (control, instrument, power and panel wiring)	1.00	Sum		\$ 200,000	\$	200,000	\$	200,000	
30.7	Miscellaneous assemblies	1.00	Sum		\$ 300,000	\$	300,000	\$	300,000	
WG-Q TOTAL SUPPLY \& INSTALL:								\$	1,250,000	
WG-R - REPLACE THERMALLY LIMITING EQUIPMENT LINE 54 (NYSEG 921)										
31	Replace Thermally Limiting Equipment at Erie Station for line 54 (NYSEG 921)									
31.1	Replacing one 115kV circuit breaker	1.00	Unit	\$ 150,000	\$ 50,000	\$	200,000	\$	200,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		OTAL	Remarks
31.2	Instrument Transformers	1.00	Unit		\$ 200,000	\$	200,000	\$	200,000	
31.3	New disconnect switches	1.00	Lot		\$ 100,000	\$	100,000	\$	100,000	
31.4	New A\&B relay packages	1.00	Lot		\$ 50,000	\$	50,000	\$	50,000	
31.5	Conductor and insulator replacement	1.00	Lot		\$ 200,000	\$	200,000	\$	200,000	
31.6	New cabling (control, instrument, power and panel wiring)	1.00	Sum		\$ 200,000	\$	200,000	\$	200,000	
31.7	Miscellaneous assemblies	1.00	Sum		\$ 300,000	\$	300,000	\$	300,000	
WG-R TOTAL SUPPLY \& INSTALL:								\$	1,250,000	
WG-U - REPLACE THERMALLY LIMITING EQUIPMENT ROBINSON STN LINE 64										
32	Replace Thermally Limiting Equipment at Robinson Station for Line 64									
32.1	Replacing two 230 kV gang operated circuit breaker	2.00	Sum	250,000	\$ 75,000	\$	325,000	\$	650,000	
32.2	Instrument Transformers	1.00	Unit		\$ 200,000	5	200,000	\$	200,000	
32.3	New disconnect switches	1.00	Lot		\$ 100,000	\$	100,000	\$	100,000	
32.4	New A\&B relay packages	1.00	Lot		\$ 50,000	\$	50,000	\$	50,000	
32.5	Conductor and insulator replacement	1.00	Lot		\$ 200,000	\$	200,000	\$	200,000	
32.6	New cabling (control, instrument, power and panel wiring)	1.00	Sum		\$ 200,000	\$	200,000	\$	200,000	
32.7	Miscellaneous assemblies	1.00	Sum		\$ 300,000	\$	300,000	\$	300,000	
WG-U TOTAL SUPPLY \& INSTALL:								\$	1,700,000	
WG-V - REPLACE THERMALLY LIMITING EQUIPMENT NIAGARA STN LINE 102										
33	Replace Thermally Limiting Equipment at Niagara Station for Line 102									
33.1	Substation Equipment Replacement	1.00	Sum		\$ 500,000	\$	500,000	\$	500,000	Supply \& Install
WG-V TOTAL SUPPLY \& INSTALL:								\$	500,000	
MOB/DEMOB, ACCESS, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:										
34	Contractor Mobilization / Demobilization							\$	-	
34.1	Mob / Demob	1.00	Sum		2,000,000	\$	2,000,000	\$	2,000,000	
36	Project Management, Material Handling \& Amenities					\$	-	\$	-	
36.1	Project Management \& Staffing (includes PM, Field Engineers / Supervision, Scheduler and Cost Manager, SHEQ Staff, Materials Management Staff)	36.00	Months		\$ 350,000	\$	350,000	\$	12,600,000	
36.2	Site Accommodations, Storage, Amenities, Laydown Yards	1.00	Sum		\$ 2,500,000	\$	2,500,000	\$	2,500,000	
37	Engineering					\$	-	\$	-	
37.1	Design Engineering	1.00	Sum		\$ 10,000,000	\$	10,000,000	\$	10,000,000	
37.2	LidAR	1.00	Sum		\$ 800,000	\$	800,000	\$	800,000	
37.3	Geotech	1.00	Sum		\$ 1,800,000	\$	1,800,000	\$	1,800,000	
37.4	Surveying/Staking	1.00	Sum		\$ 800,000	\$	800,000	\$	800,000	
38	Testing \& Commissioning					\$	-	\$	-	
38.1	Testing \& Commissioning of T-Line and Equipment	1.00	Sum		\$ 2,500,000	\$	2,500,000	\$	2,500,000	
39	Permitting and Additional Costs					\$	-	\$	-	
39.1	Environmental Licensing \& Permitting Costs	1.00	Sum		\$ 5,965,150	\$	5,965,150	\$	5,965,150	
39.2	Environmental Mitigation Costs	1.00	Sum		\$ 7,796,225	\$	7,796,225	\$	7,796,225	
39.3	Warranties / LOC's	1.00	Sum		\$ 1,277,797	\$	1,277,797	\$	1,277,797	
39.4	Real Estate Costs (New)	1.00	Sum		\$ 172,069	\$	172,069	\$	172,069	
39.5	Real Estate Costs (Incumbent Utility ROW)	1.00	Sum		\$ 1,157,000	\$	1,157,000	\$	1,157,000	
39.6	Legal Fees	1.00	Sum		2,000,000	\$	2,000,000	\$	2,000,000	
39.7	Sales Tax on Materials	1.00	Sum		4,574,892	\$	4,574,892	\$	4,574,892	Includes 8.75\% sales tax
39.8	Fees for easements or permits, including roadway, railroad, building or other local permits	1.00	Sum		200,000	\$	200,000	\$	200,000	
MOB/DEMOB, ACCESS, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS - TOTAL:								\$	56,143,133	
SYSTEM UPGRADE FACILITIES										

COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate		TAL	Remarks
SUF 1	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)						\$	3,750,000	SUF upgrades
SYSTEM UPGRADE FACILITY TOTAL:							\$	3,750,000	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - To12									
FEDERAL						Segment 1		Segment 2		Segment 3		Segment 4		Segment 5	
Agency	Jurisidicion	PermitApproval	Primary Regulated Areas	General Permititing Notes	Potential StudiesPlans	Min	Max.	Min	Max.	Min.	Max.	Min.	Max.	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a preconstruction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan	\$27,000	\$89,000	\$42,500	\$118,000	\$16,200	\$68,750			\$11,800	\$60,600
usfws	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$47,800	\$134,000	\$57,300	\$153,000	\$14,300	\$67,000	\$11,550	\$61,500		
FAA	Airports / Airspace	$\begin{gathered} \hline \text { Federal Aviation } \\ \text { Administration (FAA) } \\ \text { Notification } \\ \hline \end{gathered}$	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)	\$3,000	\$9,000	\$3,000	\$9,000	\$3,000	\$9,000	\$3,000	\$9,000		
Agency	Jurisicicion	PermitApproval	Primary Regulated Areas	General Permititing Notes	Potential StudiesIPlans										
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Intervenor Fund payment expected to be $\$ 100,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans	\$600,000	\$3,100,000	\$600,000	\$3,100,000						
NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan	\$12,000	\$53,000	\$12,000	\$53,000	\$12,000	\$53,000			\$12,000	\$53,000
NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes $\underset{\text { \& Hydrology Studies, Stormwater }}{\text { Sediment } \& \text { Erosion Contro Plan, Hydraulic }}$ Management Design)	\$11,200	\$38,000	\$11,200	\$38,000	\$11,200	\$38,000	\$11,200	\$38,000		

Any State or local government agency that issues permits or approvals	State Environmental Quality Review Act (SEQRA)	Environmental Assessment (EA) Determination of Significance	Projects not covered as a Type II Action (Note a project can not be segmented all phases/tasks must be considered in the review)	Most projects or activities proposed by a state agency, and all discretionary approvals (permits) from a NYS agency or local government, require an environmental impact assessment. SEQR requires the sponsoring or approving governmental body to identify and mitigate the significant environmental impacts of the activity it is proposing or permitting.	Includes Reports and Plans required for State and Federal Agency Permits, as well as, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan					\$10,000	\$500,000	\$10,000	\$500,000	\$10,000	\$10,000
nysDos	State Coastal Zone/ Management Areas	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coastal Zone; and consistency with Local Waterfont Revitalization Plans (LWRPs); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)											
						\$3,400	\$15,000			\$3,400	\$15,000				
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies	\$21,200	\$73,000	\$25,000	\$84,400	\$7,750	\$32,650	\$6,700	\$29,500		
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See UsFWS	\$1,200	\$6,400	\$1,200	\$6,400	\$1,200	\$6,400	\$1,200	\$6,400		
NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$69,000	\$17,000	\$69,000						
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee $=\$ 25$ plus $\$ 2,000,000$ additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$3,800	\$3,800	\$3,800	\$3,800	\$3,800	\$3,800				
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2 -yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000	\$11,000	\$24,000	\$11,000	\$24,000				
REGIONAL															
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$76,000	\$11,000	\$76,000						
LOCALIMUNICIPAL															

Revision: 4

Agency	Juristicition	PermitApproval	Primary Regulated Areas	General Permiting Notes	Potential StudiesPlans										
County Dept. of Public Works	County Roadway	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000	\$6,000	\$40,000	\$6,000	\$40,000	\$6,000	\$40,000		
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000	\$6,000	\$35,000	\$6,000	\$35,000	\$6,000	\$35,000		
$\begin{gathered} \hline \text { Town, City or } \\ \text { Village } \\ \hline \end{gathered}$	Variable	Building Permits	New Structures	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$18,000	\$92,000	\$18,000	\$92,000	\$18,000	\$92,000	\$18,000	\$92,000		
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways			\$6,000	\$35,000	\$6,000	\$35,000	\$6,000	\$35,000	\$6,000	\$35,000		
Town, City or Village	Wetlands	Wetland Permit Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000	\$6,000	\$52,000	\$6,000	\$52,000	\$6,000	\$52,000		
					Total Cost Range by Segment	\$811,600	\$3,944,200	\$837,000	\$3,988,600	\$135,850	\$1,071,600	\$85,650	\$898,400	\$33,800	\$123,600

| Minimum | Maximum | Expected Value |
| :---: | :---: | :---: | Excluded cost: Mitigation or restoration for impact to regulated wetlands; agricultural land and tree clearing

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T012 - National Grid High Power Transfer Solution

SUBSTATION ENGINEERING
COMPAN Y

ENVIRONMENTAL MITIGATION ESTIMATE

	Offsite Wetland Mitigation*		ROW Restoration (Seeding)**		Farmland***	
	Min.	Max.	Min.	Max.	Min.	Max.
Area	21 acres	21 acres	82 acres	163 acres	50 acres	100 acres
Cost/Acre	$\$ 100,000$	$\$ 200,000$	$\$ 4,000$	$\$ 4,000$	$\$ 503$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$	$1: 1$	$1: 1$
Total	$\$ 2,100,000$	$\$ 12,600,000$	$\$ 328,000$	$\$ 489,000$	$\$ 25,150$	$\$ 50,300$

TO12 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\mathbf{\$ 2 , 4 5 3 , 1 5 0}$	$\mathbf{\$ 1 3 , 1 3 9 , 3 0 0}$	$\mathbf{\$ 7 9 6 , 2 2 5}$

*Offsite wetland mitigation area assumes 9141 LF Forested Wetland Project Impact Reported in Permitting Summary Table by 100' ROW clearing width; includes design and installation costs only; does not include land acquisition or long term monitoring
**Assumes hydroseeding restoration only for sensitive areas within the ROW requiring timber matting (minus Active Agriculture) 141990 LF by 25' Wide (Min.) or 50' Wide (Max.)
***Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 87,558 LF Matting Impacts to Active Agriculture Land by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition or monitoring

Client: NYISO
Project: Western Transmission Project Evaluation
SUBSTATION ENGINEERING
Subject: Cost Estimate
Document No: T012 - National Grid High Power Transfer Solution

REAL ESTATE ESTIMATE

(NEW ROW)

COUNTY:
DEVELOPER:
SEGMENT:

NIAGARA
NATIONAL GRID
NIAGARA TO LOCKPORT SEGMENT
T Aroa (Acrac) | Tatale

		Area (Acres)	Total Cost	
	Total Cost		17.98	$\$$

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
SUBSTATION ENGINEERING
REAL ESTATE ESTIMATE
COMPAN

COUNTY: DEVELOPER: SEGMENT:		NIAGARA \& ERIE NATIONAL GRID (T012) NIAGARA - GARDENVILLE SEGMENT			
	DEVELOPER	SEGMENT	COUNTY	INCUMBENT UTILITY (ROW)	TOTAL ROW COST
				(ACRES)	
T012	National Grid (High Transfer)	Niagara to Gardenville - 36.2 miles	Niagara	203.82	1,157,224
			Erie	92.85	

a) Cost Estimate is based on 2017 rates.

b) Construction Schedule is in accordance with the Developers proposed schedule - we have assumed continuous working with no breaks in the
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6×10 hour days).
e) We have assumed that pole weights include anchor bolts.
f) The Developer has assumed gravel work pads. During our ROW visit it was determined that matted work pads are required.
g) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies. h) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes.
i) 15\% Contractor Mark Up (OH\&P) has been applied.
j) Assumes all environmental data and project details provided are accurate unless noted otherwise
k) USFWS T\&E Assumes that $1 / 4$ of the total project route per segment will require field survey for T\&E (Segment 1 - 9 miles, Segment 2 - 10.9 miles, Segment 3-2.28 miles, Segment 4-1.75 miles)
I) NEPA-Assumes no NEPA because Art VII (Segments 1 and 2)
m) Article 7 Intervenor Fund payment expected to be \$100,000
n) SHPO- Assumes consultation and Phase 1A/1B archeological studies with field survey for 50\% of project route (Segment 1 - 18 miles, Segment 2 -
21.8 miles, Segment $3-4.55$ miles, Segment $4-3.5$ miles)
o) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII or SEQRA review
p) SEQRA for Segments 3, 4 and 5 assumes applicant is not lead agent. Minimum costs assume FEAF Part I with no additional studies. Maximum assumes
an expanded EA. SEQRA for Segment 5 assumes minimum only costs.
q) Assumes no coordination with National Parks Service or OPRHP/State Parks
r) NYSDOS - Assumes coordination needed for work at Niagara Station and Huntley Station (Segments 1 and 3)
s) USACE wetland delineation totals assumed length of NWI wetland estimates on Permitting Summary Table. Assumes work group line segment length not duplicated (Segment 1-4 miles, Segment 2-7.9 miles, Segment 3-1.3 mile, Segment 5-0.2 miles). Assumes NYSDEC delineations overlap and are t) Mitigation costs for landscaping only (no paving, sidewalks, soundwalls, etc.)
u) No tree survey or replanting required outside regulated wetlands areas
v) Agricultural mitigation (Segment 1 only) assumes timber matting impacts and pad impacts on active agriculture land linear feet (87,558) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25 -foot-wide impact, Maximum

Subject: Cost Estimate
Document No: T012 - National Grid High Power Transfer Solution
w) Wetland mitigation area 100' wide ROW by 9141' Forested Wetland Project Impact (Segment 1) Reported in Permitting Summary Table. Wetland mitigation includes design and installation costs only; does not include land acquisition or long term monitoring. Offsite mitigation for new ROW disturbance at 1:1 and 3:1 and mitigation within ROW seeding only. Assumes no off-site wetland mitigation is required for other work segments. x) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

ATTACHMENT B7
T013 - NYPA/ NYSEG

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T013 - NYPA and NYSEG

Description		Total Amount	
1	DYSINGER SWITCHING STATION	\$	21,947,000
2	GARDENVILLE TO STOLLE ROAD 230KV TRANSMISSION LINE RECONDUCTORING	\$	14,140,200
3	LINE SEPARATION	\$	2,292,025
4	SOUTH PERRY SUBSTATION	\$	5,421,000
5	STOLLE ROAD SUBSTATION	\$	36,859,022
6	DYSINGER - STOLLE ROAD NEW 345kV TRANSMISSION LINE	\$	46,864,263
7	MOB/DEMOB, ACCESS, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS	\$	40,364,217
	CONTRACTOR MARK UP (OH\&P) 15\%	\$	25,183,159
	SUBTOTAL:	\$	193,070,885
	CONTINGENCY ON ENTIRE PROJECT (20\%)	\$	38,614,177
	TOTAL PROJECT COST:	\$	231,685,063

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate		TOTAL	Remarks
1. DYSINGER SWITCHING STATION									
Description of Work: The proposed new Dysinger Switching Station, an approximately five acre station, is planned to be located in the Town of Royalton in Niagara County, New York. The station requires the acquisition of one parcel of property.									
1	Supply and Install a New Switching Station								
1.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.0	Sum		\$ 1,500,000	1,500,000	\$	1,500,000	Supply \& Install
1.2	Substation Fence	2,020.0	LF		200	200	\$	404,000	Supply \& Install
1.3	SSVT	1.0	Ea	\$ 200,000	50,000	250,000	\$	250,000	
1.4	Switches 3ph	16.0	Ea	\$ 5,000	2,000	7,000	\$	112,000	
1.5	Fuses 1ph	3.0	Ea	\$ 15,000	15,000	30,000	\$	90,000	
1.6	Line Switches 3 ph with motor-operator	5.0	Ea	\$ 15,000	15,000	30,000	\$	150,000	
1.7	Instrument Transformers	1.0	Sum		962,000	962,000	\$	962,000	
1.8	Breakers	8.0	Ea	\$ 300,000	80,000	380,000	\$	3,040,000	
1.9	Arrestors (3 per line)	15.0	Ea	\$ 6,500	1,000	7,500	\$	112,500	
1.10	Two (2) 345 kV buses	2.0	Ea	\$ 25,000	35,000	\$ 60,000	\$	120,000	
1.11	Auxillary Power Generator - 500kW	1.0	Ea	\$ 160,000	40,000	200,000	\$	200,000	
1.12	Low Profile Foundations	293.0	Ea		5,000	5,000	\$	1,465,000	Supply \& Install
1.13	Caisson DE Foundations	32.0	Ea		50,000	50,000	\$	1,600,000	Supply \& Install
1.14	Circuit Breaker Foundations	8.0	Ea		75,000	75,000	\$	600,000	Supply \& Install
1.15	SST Foundation	1.0	Ea		75,000	75,000	\$	75,000	Supply \& Install
1.16	345 KV Line trap, 2400 A , for phase B on the line to Stolle Rd.	1.0	Ea	\$ 15,000	12,000	27,000	\$	27,000	Supply \& Install
1.17	Control House and Pad (30' $\times 90$ ')	1.0	Ea	\$ 650,000	200,000	850,000	\$	850,000	
1.18	Generator Foundation	1.0	Sum		25,000	25,000	\$	25,000	Supply \& Install
1.19	Control Cables	1.0	Sum	\$ 100,000	100,000	\$ 200,000	\$	200,000	
1.20	125VDC Batteries	2.0	Ea	\$ 50,000	50,000	\$ 100,000	\$	200,000	
1.21	Station Services	2.0	Ea		25,000	25,000	\$	50,000	
1.22	Protection, Telecom and Metering Equipment (Panels)	30.0	Ea		\$ 30,000	30,000	\$	900,000	Supply \& Install
1.23	SCADA and Communications	1.0	Sum		\$ 250,000	\$ 250,000	\$	250,000	Supply \& Install
1.24	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum		500,000	\$ 500,000	\$	500,000	Supply \& Install
1.25	Control Conduits from Cable Tray to Equipment	1.0	Sum		250,000	\$ 250,000	\$	250,000	Supply \& Install
1.26	Cable Trench Systems for Control Cables	1.0	Sum		750,000	\$ 750,000	\$	750,000	Supply \& Install
1.27	Grounding	1.0	Sum		250,000	250,000	\$	250,000	Supply \& Install
1.28	Bus Support 1 Ph	118.0	Ea	\$ 2,000	1,000	3,000	\$	354,000	
1.29	Switch Stands	23.0	Ea	\$ 8,000	3,000	11,000	\$	253,000	
1.30	Fuse Stand	1.0	Ea	\$ 8,000	3,000	11,000	\$	11,000	
1.31	Misc. Structures	1.0	Sum		\$ 44,000	44,000	\$	44,000	
1.32	Substation A-Frame Structures Shared Column	12.0	Ea	20,000	5,000	25,000	\$	300,000	
1.35	Arrestor Stands	15.0	Ea	\$ 2,500	1,000	3,500	\$	52,500	
1.36	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		\$ 1,000,000	1,000,000	\$	1,000,000	Supply \& Install
1.37	Connection of Existing Lines to Dysinger Switchyard	1.0	Sum		\$ 5,000,000	5,000,000	\$	5,000,000	Supply \& Install
1. DYSINGER SWITCHING STATION - TOTAL SUPPLY \& INSTALL:							\$	21,947,000	
2. GARDENVILLE TO STOLLE ROAD 230KV TRANSMISSION LINE RECONDUCTORING									
 existing protection relays in the remote ends of Gardenville and Stole Road Substations.									
2	230kV Reconductoring						\$	-	
2.1	Reconductoring 1590 ACSR Falcon	250,000.00	Ft	\$	\$	\$ 8	\$	1,875,000	
2.2	Reconductoring shield wire	83,000.00	Ft	\$	\$	\$ 6	\$	473,100	
2.3	Reconductoring 48 fibers OPGW (1)	83,000.00	Ft	\$	\$	\$ 9	\$	763,600	
2.4	OPGW Splice Boxes	5.00	Ea	\$ 1,500	\$ 1,000	2,500	\$	12,500	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate		TOTAL		Remarks
2.5	OPGW Splice \& Test	1.00	Sum		\$	6,000	\$	6,000	\$	6,000	
2.6	Insulators for suspension structures (ANSI 52-5 and 52-8)	96.00	Set	1,500	\$	1,500	\$	3,000	\$	288,000	
2.7	Miscellaneous including hardware, guying, etc.	12.00	Mile		\$	30,000	\$	30,000	\$	360,000	Supply \& Install
2.8	Matting for wetland \& sensitive areas	105,600.00	Ft		\$	70	\$	70	\$	7,392,000	
2.9	Access Roads	140.00	Structure		\$	10,000	\$	10,000	\$	1,400,000	
2.10	Remove existing conductor	8.00	Mile	\$ 15,000	\$	15,000	\$	30,000	\$	240,000	
2.11	Replacement of 20% of steel structure arms and cross sections	12.00	Structure	\$ 10,000	\$	10,000	\$	20,000	\$	240,000	
2.12	Replacement of 20\% of wood H-Frames pieces	6.00	Structure	\$ 7,500	\$	7,500	\$	15,000	\$	90,000	
2.13	Miscellaneous	1.00	Sum		\$	1,000,000	\$	1,000,000	\$	1,000,000	
2. GARDENVILLE TO STOLLE ROAD 230KV TRANSMISSION LINE RECONDUCTORING- TOTAL SUPPLY \& INSTALL:									\$	14,140,200	
3. LINE SEPARATION											
Description of Work: The project includes separation of three structures approximately 3,000 feet of National Grid's Niagara to Packard line 61 and NYSEG's Niagara to Robinson Road line 64.											
3.1	Foundations - Tangents-Delta Configuration-1(single circuit)	1.00	EA		\$	60,000	\$	60,000	\$	60,000	Supply \& Install
3.2	Foundations - Slight-Angles-Vertical Configuration	1.00	EA		\$	90,000	\$	90,000	\$	90,000	Supply \& Install
3.3	Foundations - Heavy Angle-Vertical Configuration (15-25 degrees))-1 (double circuit)	1.00	EA		\$	120,000	\$	120,000	\$	120,000	Supply \& Install
3.4	Foundations - Dead-Ends Vertical Configuration (25-90 degrees)- 2 (single circuit)	1.00	EA		\$	150,000	\$	150,000	\$	150,000	Supply \& Install
3.5	Steel Poles 345kV Heavy Dead-End Structures	1.00	EA	\$ 125,000	\$	75,000	\$	200,000	\$	200,000	
3.6	Steel Poles 345kV Slight Angles Vertical Structures	1.00	EA	\$ 117,000	\$	80,300	\$	197,300	\$	197,300	
3.7	Steel Poles 345kV Angles >60 Structures	1.00	EA	\$ 93,500	\$	56,000	\$	149,500	\$	149,500	
3.8	Steel Poles 345kV Tangent-Delta Configuration Structures	1.00	EA	\$ 38,000	\$	23,000	\$	61,000	\$	61,000	
3.9	Conductoring 1192 45/7" "BUNTING" ACSR	20,000.00	Ft	\$ 3	\$	5	\$	8	\$	160,000	
3.10	Shield wiring 7/16 EHS Static	5,000.00	Ft	\$ 1	\$	5	\$	6	\$	28,500	
3.11	V-strings Suspension and tension strings hardware, OPGW, vibration dampers and spacers	20.00	EA	\$ 5,000	\$	5,000	\$	10,000	\$	200,000	
3.12	Insulators for suspension structures (ANSI 52-5 and 52-8)	30.00	EA	\$ 850	\$	850	5	1,700	\$	51,000	
3.13	Miscellaneous	1.00	Sum		\$	100,000	\$	100,000	\$	100,000	
3.14	Matting for wetland \& sensitive areas	5,280.00	Ft		\$	70	\$	70	\$	369,600	
3.15	Access Roads to each structure	6.00	EA		\$	10,000	\$	10,000	\$	60,000	
3.16	Work Pads	75,000.00	SQFT		\$	4	\$	4	\$	264,000	
3.17	Restoration of Work Pad Areas	7,500.00	SQFT		\$	0.2	\$	0.2	\$	1,125	
3.18	Clearing existing ROW for work spaces	2.00	Acre		\$	15,000	\$	15,000	\$	30,000	
3. LINE SEPARATION- TOTAL SUPPLY \& INSTALL:									\$	2,292,025	
4. SOUTH PERRY SUBSTATION											
Description of Work: The project includes upgrades to the existing South Perry Substation.											
4	Supply and Install New Phase Angle Regulator										
4.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.00	Sum		\$	375,000	\$	375,000	\$	375,000	
4.2	Substation Fence	375.00	LF		\$	200	\$	200	\$	75,000	Supply \& Install
4.3	115kV 82MVA Phase Angle Regulator	1.00	Ea	\$ 3,500,000	\$	500,000	\$	4,000,000	\$	4,000,000	
4.4	Switches 3ph	2.00	Ea	\$ 5,000	\$	2,000	\$	7,000	\$	14,000	
4.5	Line Switches 3 ph with motor-operator	1.00	Ea	\$ 15,000	\$	15,000	\$	30,000	\$	30,000	
4.6	Instrument Transformers	1.00	Sum		\$	121,000	\$	121,000	\$	121,000	
4.7	Arrestors	9.00	Ea	\$ 6,500	\$	1,000	\$	7,500	\$	67,500	
4.8	Low Profile Foundations	11.00	Ea		\$	5,000	\$	5,000	\$	55,000	Supply \& Install
4.9	Caisson DE Foundations	4.00	Ea		\$	50,000	5	50,000	\$	200,000	Supply \& Install
4.10	Control Cables	1.00	Sum	10,000	\$	10,000	\$	20,000	\$	20,000	
4.11	Protection, Telecom and Metering Equipment (Panels)	4.00	Ea		\$	30,000	\$	30,000	\$	120,000	Supply \& Install
4.12	Control Conduits to Equipment	1.00	Sum		\$	75,000	\$	75,000	\$	75,000	Supply \& Install
4.13	Grounding	1.00	Sum		\$	90,000	\$	90,000	\$	90,000	Supply \& Install

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate		TOTAL		Remarks
4.14	Bus Support 1 Ph	3.00	Ea	\$	2,000	\$	1,000	\$	3,000		9,000	
4.15	Switch Stands	2.00	Ea	\$	8,000	\$	3,000	\$	11,000	\$	22,000	
4.16	Misc. Structures	1.00	Sum			\$	12,000	\$	12,000	\$	12,000	
4.17	Substation A-Frame Structures	1.00	Ea	\$	20,000	\$	5,000	\$	25,000	\$	25,000	
4.18	Arrestor Stands	3.00	Ea	\$	2,500	\$	1,000	\$	3,500	\$	10,500	
4.19	Miscellaneous Materials and Above / Below Ground Works	1.00	Sum			\$	100,000	\$	100,000	\$	100,000	
4. SOUTH PERRY SUBSTATION- TOTAL SUPPLY \& INSTALL:										\$	5,421,000	
5. STOLLE ROAD SUBSTATION												
Description of Work: The project includes upgrades to the existing Stolle Road Substation.												
5	Supply and Install Substation upgrading equipment											
5.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.00	Sum			\$	2,000,000	\$	2,000,000		2,000,000	
5.2	$345-230 \mathrm{kV}, 240 / 320 / 400 / 448 \mathrm{MVA}(55 / / 65 \mathrm{deg}$ C) Auto-transformer connected Y-Y-Delta	2.00	Ea	\$	3,900,000	\$	500,000	\$	4,400,000		8,800,000	
5.3	$345 \mathrm{kV}, 3000 \mathrm{~A}, 40 \mathrm{ka}$ Breakers, IPO	9.00	Ea	\$	300,000	\$	80,000	\$	380,000		3,420,000	
5.4	$345 \mathrm{kV}, 3000 \mathrm{~A}, 3 \mathrm{PH}-\mathrm{GOP}, 63 \mathrm{kA}$, motor-operated switches	18.00	Ea	\$	15,000	\$	15,000	\$	30,000	\$	540,000	
5.5	$345 \mathrm{kV}, 3000 \mathrm{~A}, 3 \mathrm{SH}-\mathrm{GOP}, 63 \mathrm{kA}$, motor-operated switches equipped w/interlocked grounding switch	1.00	Ea	\$	20,000	\$	16,000	\$	36,000	\$	36,000	
5.6	Instrument Transformers	1.00	Sum			\$	1,137,200	\$	1,137,200		1,137,200	
5.9	Station Class Surge Arresters - ratings: $276 \mathrm{kV} / 220 \mathrm{kV} \mathrm{MVOC}$	21.00	Ea	\$	6,500	\$	1,000	\$	7,500	\$	157,500	
5.10	345 KV Line trap, 2400 A , for phase B on the line to Dysinger	1.00	Ea	\$	15,000	\$	12,000	\$	27,000	\$	27,000	
5.11	XLPE Cable 2000 KCM Supply and Installation	3,000.00	Ft	\$	60	\$	48	\$	108	\$	324,000	
5.12	Terminations	1.00	Sum			\$	200,000	\$	200,000	\$	200,000	Supply \& Install
5.13	Ductbank	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
5.14	345 kV Post Insulators	37.00	Ea	\$	750	\$	600	\$	1,350	\$	49,950	
5.15	5" AL T6-6061 IPS Bus bar	4,068.00	Ft	\$	5	\$	4	\$	8	\$	32,544	
5.16	1590 KCM AAC Overhead Cable	12,972.00	Ft	\$	3	\$	2	\$	5	\$	58,374	
5.17	Control House Steel $26^{\prime} \times 62^{\prime}$ and Pad	1.00	Ea	\$	650,000	\$	200,000	\$	850,000	\$	850,000	
5.18	RELAY BUS DIFF 115 KV GE B30 SYS B	3.00	Ea	\$	12,000	\$	9,600	\$	21,600	\$	64,800	
5.19	RELAY BUS DIFF 115 KV SEL 487B SYS A	3.00	Ea	\$	7,000	\$	5,600	\$	12,600	\$	37,800	
5.20	RELAY SEL 421 LN DIST APP SYS A	1.00	Ea	\$	7,000	\$	5,600	\$	12,600	\$	12,600	
5.21	RELAY CAP BK/MFER/LN B 115 KV SYSA SEL451	9.00	Ea	\$	5,000	\$	4,000	\$	9,000	\$	81,000	
5.22	RELAY BUS DIFF 345 KV SEL 487E SYS A	4.00	Ea	\$	9,000	\$	7,200	\$	16,200	\$	64,800	
5.23	RELAY GE T60 345/115/34/12/KV TFR DIFF/RE	4.00	Ea	\$	9,000	\$	7,200	\$	16,200	\$	64,800	
5.24	RELAY PRT MOD GE L90 W7K	1.00	Ea	\$	14,000	\$	11,200	\$	25,200	\$	25,200	
5.25	Protection, Telecom and Metering Equipment (Panels)	17.00	Ea	\$	5,000	\$	4,000	\$	9,000	\$	153,000	
5.26	Guard 800, RFL 9780, 9785	3.00	Ea	\$	10,000	\$	8,000	\$	18,000	\$	54,000	
5.27	125VDC Substation Battery Systems (345 kV)	2.00	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
5.28	($345 \mathrm{kV}, 230 \mathrm{KV}, 115 \mathrm{kV}$)	1.00	Ea	\$	3,750	\$	3,000	\$	6,750		6,750	
5.29	JMUX's (Including remote ends)	3.00	Ea	\$	9,000	\$	7,200	\$	16,200	\$	48,600	
5.30	HVI-Positron (Including remote ends)	3.00	Ea	\$	15,000	\$	12,000	\$	27,000	\$	81,000	
5.31	230 kV , 3000A, 40ka Breakers, 3PH-GOP	5.00	Ea	\$	250,000	\$	75,000	\$	325,000		1,625,000	
5.32	$230 \mathrm{kV}, 3000 \mathrm{~A}, 3 \mathrm{PH}-\mathrm{GOP}, 63 \mathrm{kA}$, motor-operated switches	12.00	Ea	\$	20,000	\$	15,000	\$	35,000	\$	420,000	
5.33	$230 \mathrm{kV}, 3000 \mathrm{~A}, 3 \mathrm{SH}-\mathrm{GOP}, 63 \mathrm{kA}$, motor-operated switches equipped w/interlocked grounding switch	1.00	Ea	\$	20,000	\$	15,000	\$	35,000	\$	35,000	
5.34	$230 \mathrm{kV} \mathrm{S/P} \mathrm{CCVT}, \mathrm{207000:115-69V} \mathrm{(1800-3000:1-1)} \mathrm{Instrument} \mathrm{Transformers}$	18.00	Ea	\$	14,000	\$	8,000	\$	22,000	\$	396,000	
5.35	Station Class Surge Arresters - ratings: $172 \mathrm{kV} / 140 \mathrm{kV}$ MVOC	21.00	Ea	\$	6,500	\$	1,000	\$	7,500	\$	157,500	
5.36	XLPE Cable 2000 KCM Supply and Installation	11,448.00	Ft	\$	15	\$	12	\$	26	\$	297,648	
5.37	230 kV Post Insulators	39.00	Ea	\$	650	\$	520	\$	1,170	\$	45,630	
5.38	5" AL T6-6061 IPS Bus bar	1,951.00	Ft	\$	5	\$	4	\$	8	\$	15,608	
5.39	1590 KCM AAC Overhead Cable	2,000.00	Ft	\$	2	\$	2	\$	4		7,200	
5.40	RELAY BUS DIFF 115 KV GE B30 SYS B	1.00	Ea	\$	12,000	\$	9,600	\$	21,600	\$	21,600	
5.41	RELAY BUS DIFF 115 KV SEL 487B SYS A	1.00	Ea	\$	7,000	\$	5,600	\$	12,600	\$	12,600	

Item	Description	Quantity	Unit		Rate		or \& ment Rate		nit Rate		TAL	Remarks
5.42	RELAY SEL 421 LN DIST APP SYS A	4.00	Ea	\$	7,000	\$	5,600	\$	12,600	\$	50,400	
5.43	RELAY CAP BK/MFER/LN B 115 KV SYSA SEL451	7.00	Ea	\$	5,000	\$	4,000	\$	9,000	\$	63,000	
5.44	RELAY PRT MOD GE L90 W7K	4.00	Ea	\$	14,000	\$	11,200	\$	25,200	\$	100,800	
5.45	Protection \& Control Panels	7.00	Ea	\$	5,000	\$	4,000	\$	9,000	\$	63,000	
5.46	Guard 800, RFL 9780, 9785	10.00	Ea	\$	10,000	\$	8,000	\$	18,000	\$	180,000	
5.47	125VDC Substation Battery Systems (230 kV)	2.00	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
5.48	$115 \mathrm{kV}, 3000 \mathrm{~A}, 40 \mathrm{ka}$ Breakers, 3PH-GOP	2.00	Ea	\$	150,000	\$	50,000	\$	200,000	\$	400,000	
5.49	$115 \mathrm{kV}, 3000 \mathrm{~A}, 3 \mathrm{PH}$-GOP, 63 kA , motor-operated switches	5.00	Ea	\$	15,000	\$	12,000	\$	27,000	\$	135,000	
5.51	Station Class Surge Arresters - ratings: $96 \mathrm{kV} / 76 \mathrm{kV}$ MVOC	6.00	Ea	\$	5,000	\$	700	\$	5,700	\$	34,200	
5.52	XLPE Cable 2000 KCM Supply and Installation	5,500.00	Ft	\$	15	\$	12	\$	26	\$	143,550	
5.53	4" AL T6-6061 IPS Bus bar	306.00	Ft	\$	4	\$	3	\$	6	\$	1,928	
5.54	1590 KCM AAC Overhead Cable	400.00	Ft	\$	2	\$	2	\$	4	\$	1,440	
5.55	RELAY CAP BK/MFER/LN B 115 KV SYSA SEL451	2.00	Ea	\$	5,000	\$	4,000	\$	9,000	\$	18,000	
5.56	Protection \& Control Panels	1.00	Ea	\$	5,000	\$	4,000	\$	9,000	\$	9,000	
5.57	Miscellaneous Materials and Above / Below Ground Works	1.00	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
5.58	Control Cables	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
5.59	Conduit	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
5.60	Cable trenches	1.00	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
5.61	Bus works	1.00	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
5.62	Cable and Wire	1.00	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
5.63	New fence	3,040.00	LF			\$	200	\$	200	\$	608,000	Supply \& Install
5.64	SCADA and Communications	1.00	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
5.65	Commissioning and Testing	1.00	Sum			\$	200,000	\$	200,000	\$	200,000	Supply \& Install
5.66	Low Voltage AC Distribution \& DC Panels \& Switches	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
5.67	Low Profile	402.00	Structure			\$	5,000	\$	5,000	\$	2,010,000	Supply \& Install
5.68	Caisson Dead End	31.00	Structure			\$	50,000	\$	50,000	\$	1,550,000	Supply \& Install
5.69	Circuit Breaker	16.00	Structure			\$	75,000	\$	75,000	\$	1,200,000	Supply \& Install
5.70	Lightning Mast	17.00	Structure			\$	15,000	\$	15,000	\$	255,000	Supply \& Install
5.71	Transformer with concrete moat and double steel grating.	2.00	Structure			\$	150,000	\$	150,000	\$	300,000	Supply \& Install
5.72	Bus Support 1ph	77.00	Unit	\$	2,000	\$	1,000	\$	3,000	\$	231,000	
5.73	Bus Support 3ph	12.00	Unit	\$	4,500	\$	2,000	\$	6,500	\$	78,000	
5.74	Switch Stands	37.00	Unit	\$	8,000	\$	3,000	\$	11,000	\$	407,000	
5.75	Misc. Structures	1.00	Sum			\$	90,000	\$	90,000	\$	90,000	
5.76	Lightning Masts 70-ft	17.00	Unit	\$	10,000	\$	2,000	\$	12,000	\$	204,000	
5.77	A-frame Dead End	8.00	Unit	\$	20,000	\$	5,000	\$	25,000	\$	200,000	
5.78	H-frame Dead End	2.00	Unit	\$	30,000	\$	15,000	\$	45,000	\$	90,000	
5.79	UG Riser Structure 1ph (assume [2] fnds per ph.)	40.00	Unit	\$	15,000	\$	15,000	\$	30,000	\$	1,200,000	
5.80	Grounding	1.00	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
 6. DYSINGER - STOLLE ROAD NEW 345kV TRANSMISSION LINE												
Description of Work: The construction of a new approximately 20 miles 345 kV single circuit overhead transmission line originating at the new Dysinger Switching Station, and terminating at the existing NYSEG Stolle Road Substation.												
6	New 345kV Transmission Line											
6.1	Foundations for Tangents-Delta Configuration	143.00	Structure			\$	60,000	\$	60,000	\$	8,580,000	Supply \& Install
6.2	Foundations for Slight-Angles-Vertical Configuration	3.00	Structure			\$	90,000	\$	90,000	\$	270,000	Supply \& Install
6.3	Foundations for Heavy Angle-Vertical Configuration	1.00	Structure			\$	120,000	\$	120,000	\$	120,000	Supply \& Install
6.4	Foundations Dead-Ends Vertical Configuration	12.00	Structure			\$	150,000	\$	150,000	\$	1,800,000	Supply \& Install
6.5	Steel Poles 345kV Heavy Dead-End Structures	12.00	Structure	\$	125,000	\$	75,000	\$	200,000	\$	2,400,000	
6.6	Steel Poles 345kV Slight Angles Vertical Structures	3.00	Structure	\$	67,000	\$	40,000	S	107,000	\$	321,000	
6.7	Steel Poles 345kV Angles >60 Structures	1.00	Structure	\$	93,500	\$	56,000	\$	149,500	\$	149,500	

Revision: 4

Item	Description	Quantity	Unit		Supply Rate		bor \& nent Rate		nit Rate		TAL	Remarks
6.8	Steel Poles 345kV Tangent-Delta Configuration Structures	143.00	Structure	\$	38,000	\$	23,000	\$	61,000	\$	8,723,000	
6.9	Conductoring double bundled 795 Drake ACSR	650,000.00	Ft	\$	2	\$	5	\$	7	\$	4,355,000	
6.10	Shield wiring of 7\#9 Alumoweld (1)	111,000.00	Ft	\$	1	\$	5	\$	6	\$	632,700	
6.11	Wiring of 48 fibers OPGW (1)	111,000.00	Ft	\$	4	\$	5	\$	9	\$	999,000	
6.12	OPGW Splice Boxes	9.00	Ea	\$	1,500	\$	1,000	\$	2,500	\$	22,500	
6.13	OPGW Splice \& Test	1.00	Sum			\$	10,800	\$	10,800	\$	10,800	Supply \& Install
6.14	Insulators for suspension structures (ANSI 52-5 and 52-8)	1,933.00	Set	\$	850	\$	150	\$	1,000	\$	1,933,000	
6.15	V-strings Suspension and tension strings hardware, OPGW, vibration dampers and spacers	1.00	Lot	\$	1,000,000	\$	900,000	\$	1,900,000	\$	1,900,000	
6.16	Install grounding	159.00	Ea			\$	5,000	\$	5,000	\$	795,000	Supply \& Install
6.17	Matting for wetland \& sensitive areas	36,960.00	Ft			\$	70	\$	70	\$	2,587,200	Supply \& Install
6.18	Work Pads	1,837,500.00	SQFT			\$	4	\$	4	\$	6,468,000	Supply \& Install
6.19	Restoration of Work Pad Areas	183,750.00	SQFT			\$	0.2	\$	0.2	\$	27,563	Supply \& Install
6.20	Access Roads	159.00	Structure			\$	10,000	\$	10,000	\$	1,590,000	Supply \& Install
6.21	Clearing of virgin forest land	46.00	Acre			\$	15,000	\$	15,000	\$	690,000	Supply \& Install
6.22	Clearing existing ROW for work spaces	46.00	Acre			\$	15,000	\$	15,000	\$	690,000	Supply \& Install
6.23	Maintenance and Protection of Traffic on Public Roads	1.00	Sum			\$	800,000	\$	800,000	\$	800,000	Supply \& Install
6.24	Culverts and Misc Access	1.00	Sum			\$	300,000	\$	300,000	\$	300,000	Supply \& Install
6.25	Snow Removal	1.00	Sum			\$	700,000	\$	700,000	\$	700,000	Supply \& Install
6. DYSING	- STOLLE ROAD NEW 345kV TRANSMISSION LINE - TOTAL SUPPLY \& INSTALL:									\$	46,864,263	
7. MOB/D	MOB, ACCESS, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS											
7	Contractor Mobilization / Demobilization											
7.1	Mob / Demob	1.00	Sum			\$	1,500,000	\$	1,500,000	\$	1,500,000	
	Project Management, Material Handling \& Amenities	1.00						\$	-	\$	-	
7.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision, Scheduler and Cost Manager, SHEQ Staff, Materials Management Staff)	22.00	Months			\$	350,000	\$	350,000	\$	7,700,000	
7.3	Site Accommodations, Storage, Amenities, Laydown Yards	1.00	Sum			\$	1,800,000	\$	1,800,000	\$	1,800,000	
	Engineering	-						\$	-	\$	-	
7.4	Design Engineering	1.00	Sum			\$	6,000,000	\$	6,000,000	\$	6,000,000	
7.5	Lidar	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	
7.6	Geotech	1.00	Sum			\$	800,000	\$	800,000	\$	800,000	
7.7	Surveying/Staking	1.00	Sum			\$	500,000	\$	500,000	\$	500,000	
	Testing \& Commissioning	-						\$	-	\$	-	
7.8	Testing \& Commissioning of T-Line and Equipment	1.00	Sum			\$	2,500,000	\$	2,500,000	\$	2,500,000	
	Permitting and Additional Costs	-						\$	-	\$	-	
7.9	Environmental Licensing \& Permitting Costs	1.00	Sum			\$	2,366,540	\$	2,366,540	\$	2,366,540	
7.10	Environmental Mitigation	1.00	Sum			\$	6,312,700	\$	6,312,700	\$	6,312,700	
7.11	Warranties / LOC's	1.00	Sum			\$	693,715	\$	693,715	\$	693,715	
7.12	Real Estate Costs (New)	1.00	Sum			\$	497,876	\$	497,876	\$	497,876	
7.13	Real Estate Costs (Incumbent Utility ROW)	1.00	Sum			\$	1,613,000	\$	1,613,000	\$	1,613,000	
7.14	Legal Fees	1.00	Sum			\$	2,000,000	\$	2,000,000	\$	2,000,000	
7.15	Allowance for Funds Used During Construction (AFUDC)	1.00	Sum					\$	-	\$	-	
7.16	Carrying Charges	1.00	Sum					\$	-	\$	-	
7.17	Fees for permits, including roadway, railroad, building or other local permits	1.00	Sum			\$	200,000	\$	200,000	\$	200,000	
7.18	Sales Tax on Materials	1.00	Sum	\$	5,380,386			\$	5,380,386	\$	5,380,386	
7. MOB/DEMOB, ACCESS, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS - TOTAL SUPPLY \& INSTALL:										\$	40,364,217	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T013	
FEDERAL						Proposal	
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)		Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan		
						\$17,880	\$124,400
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$42,800	\$124,000
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)	\$3,000	\$9,000
STATE							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article VII will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88) Assumes Intervenor Fund amount of $\$ 100,000$	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans		
						\$600,000	\$3,100,000
NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan		
						\$12,000	\$53,000

NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)	\$11,200	\$38,000
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies	\$19,200	\$67,000
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400
NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$69,000
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2-yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)		
						\$11,000	\$24,000
REGIONAL							
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$76,000
LOCALIMUNICIPAL							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of ways			\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000

Town, City or Village	Variable	Building Permits	New Structures	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right of-ways			\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000
						Minimum	Maximum
		ENVIRONMENTAL LICENSING \& PERMITTING COST (EXCLUDING MITIGATION)			PROJECT T013 TOTAL	\$788,280	\$3,944,800
Excluded cost: Mitigation or restoration for impact to regulated wetlands; agricultural land and tree clearing					Expected Value	\$2,366,540	

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T013 - NYPA and NYSEG

ENVIRONMENTAL MITIGATION ESTIMATE

	Offsite Wetland Mitigation*		Farmland**	
	Min.	Max.	Min.	Max.
Area	30 acres	30 acres	16.8 acres	33.7 acres
Cost/Acre	$\$ 60,000$	$\$ 120,000$	$\$ 503$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$
Total	$\$ 1,800,000$	$\$ 10,800,000$	$\$ 8,450$	$\$ 16,951$

T013 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\$ 1,808,450$	$\$ 10,816,951$	$\$ \mathbf{\$ 3 1 2 , 7 0 1}$

*Offsite wetland mitigation area assumes clearing of NWI Forested/Shrub Wetland Approx. 3.24 miles (17107 IF) by 75 ' ROW width; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in nonforested wetlands; costing includes design and installation costs only; does not include land acquisition or long term monitoring
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU
(production numbers from 2016 USDA NYS Agriculture Overview), area assumes
5.56 miles (29356.8 LF) Adjacent to Agricultural Land by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T013 - NYPA and NYSEG

COUNTY:	ERIE		
DEVELOPER:	NYPA/NYSEG (T013)		
SEGMENT:	DYSINGER - STOLLE SEGMENT		
	Area (Acres)		
Sub Total	0.68	\$	4,376.00

COUNTY:
NIAGARA \& ERIE DEVELOPER: SEGMENT:
NORTH AMERICAN (TOO6) DYSINGER - STOLLE SEGMENT

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T013-NYPA and NYSEG
REAL ESTATE ESTIMATE

NIAGARA
NYPA/NYSEG (T013)
DYSINGER SUBSTATION

		Total Cost
	Total Cost of Proposed Substation Site	$\$ 493,500.00$

SUBSTATION ENGINEERING

r)Agricultural mitigation assumes timber matting impacts and pad impacts on adjacent agriculture land total (5.56 miles) along the Dysinger to Stolle
and Gardenville to Stolle routes requires crop damage payments. Payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel
price/acre. Minimum assumes 25-foot-wide impact, Maximum assumes 50-foot-wide impact.
s)Assumes Right of Way restoration is accounted for in construction costs
t)Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.)
u)No tree survey or replanting required outside regulated wetlands areas
v)Assumes Article VII Intervenor Fund payment expected to be \$100,000
w)Assume preliminary engineering and preparation of interconnection studies are complete.

INDEPENDENT ESTIMATES

ATTACHMENT B8

T014 - NEXTERA ENERGY

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T014-NextEra Energy
SUBSTATION ENGINEERING

SUMMARY OF COST ESTIMATE

		PROPOSAL (T014)			
		PREFERRED ROUTE		ALTERNATIVE ROUTE	
Description		Total Amount		Total Amount	
1	CLEARING \& ACCESS FOR TRANSMISSION LINE CONSTRUCTION	\$	12,717,405	\$	13,571,466
2	TRANSMISSION LINE FOUNDATIONS	\$	3,200,398	\$	10,001,353
3	STRUCTURES - TRANSMISSION LINE	\$	4,688,312	\$	12,215,200
4	CONDUCTOR, SHIELDWIRE, OPGW	\$	6,137,208	\$	6,089,688
5	TRANSMISSION LINE INSULATOR, FITTINGS, HARDWARE	\$	1,382,170	\$	1,829,571
6	NEW DYSINGER SUBSTATION	\$	37,852,000	\$	37,852,000
7	EAST STOLLE RD SUBSTATION	\$	13,963,000	\$	13,963,000
8	MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS	\$	31,728,688	\$	43,673,566
	CONTRACTOR MARK-UP (OH\&P) 15\%	\$	16,750,377	\$	20,879,376
	SUBTOTAL:	\$	128,419,558	\$	160,075,219
	CONTINGENCY (20\%)	\$	25,683,912	\$	32,015,044
TOTAL (A):		\$	154,103,470	\$	192,090,263
9	SYSTEM UPGRADE FACILITIES	\$	19,705,790	\$	19,705,790
	CONTRACTOR MARKUP \& CONTINGENCY (35\%)	\$	6,897,027	\$	6,897,027
	TOTAL (B):	\$	26,602,817	\$	26,602,817
	TOTAL PROJECT COST (A+B):			\$ 218,693,080	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate:		TAL:	Remarks
1. CLEARI	G \& ACCESS FOR TRANSMISSION LINE CONSTRUCTION								
1.1	Clearing the ROW (mowing \& clearing)	139.0	Acre		\$ 15,000	15,000	\$	2,085,000	
1.2	Access Road	48,535.0	LF		\$ 45	\$ 45	\$	2,184,075	Assumes Type 1 Type Gravel Road
1.3	Silt Fence	48,535.0	LF		\$ 4	4	\$	194,140	
1.4	Matting	56,952.0	LF		\$ 70	\$ 70	\$	3,986,640	
1.5	Snow Removal	1.0	Sum		320,000	\$ 320,000	\$	320,000	
1.6	ROW Restoration	20.0	Mile		\$ 10,000	\$ 10,000	\$	200,000	
1.7	Work Pads	795,000.00	SF		\$ 4	\$ 4	\$	2,798,400	
1.8	Restoration for Work Pad areas	79,500.00	SF		\$ 0.2	\$ 0.2	\$	11,925	
1.9	Temporary Access Bridge	20.0	EA		\$ 20,035	\$ 20,035	\$	400,700	
1.10	Air Bridge	5.0	EA		\$ 14,445	\$ 14,445	\$	72,225	
1.11	Stabilized Construction Entrance	10.0	EA		\$ 4 4,580	\$ 4,580	\$	45,800	
1.12	Maintenance and Protection of Traffic on Public Roads	1.0	LS		\$ 300,000	\$ 300,000	\$	300,000	
1.13	Culverts / Misc. Access	1.0	LS		100,000	\$ 100,000	\$	100,000	
1.14	Concrete Washout Station	10.0	EA		1,850	\$ 1,850	\$	18,500	
TOTAL - C	EARING \& ACCESS FOR TRANSMISSION LINE:						\$	12,717,405	
2. TRANS	ISSION LINE FOUNDATIONS								
2.1	Direct Embed Foundation $3^{\prime} \times 11^{\prime}$	267.0	Ea		\$ 9,680	\$ 9,680	\$	2,584,560	Supply \& Install
2.2	Direct Embed Foundation $3^{\prime} \times 12^{\prime}$	35.0	Ea		\$ 10,648	\$ 10,648	\$	372,680	Supply \& Install
2.3	Direct Embed Foundation $3^{\prime} \times 13^{\prime}$	8.0	Ea		11,713	\$ 11,713	\$	93,702	Supply \& Install
2.4	Direct Embed Foundation $3^{\prime} \times 14^{\prime}$	5.0	Ea		12,884	\$ 12,884	\$	64,420	Supply \& Install
2.5	Direct Embed Foundation ${ }^{\prime} \times \times 15^{\prime}$	6.0	Ea		14,172	\$ 14,172	\$	85,035	Supply \& Install
TOTAL - T	ANSMISSION LINE FOUNDATIONS:						\$	3,200,398	
3. STRUC	URES - TRANSMISSION LINE								
3.1	Dead-End 3 Pole Wood Structure, H 288 ft	5	Ea	\$ 6,000	\$ 8,185	\$ 14,185	\$	70,927	
3.2	Dead-End 3 Pole Wood Structure, H2 29 ft	2	Ea	\$ 7,200	\$ 6,925	\$ 14,125	\$	28,250	
3.3	Dead-End 3 Pole Wood Structure, H2 100ft	2	Ea	\$ 8,640	\$ 8 8,459	\$ 17,099	\$	34,198	
3.4	Dead-End 3 Pole Wood Structure, H2 110ft	1	Ea	\$	12,689	\$	\$	23,057	
3.5	Angle 3 Pole Wood Structure, H1-90ft	4	Ea	\$ 6,480	13,177	\$ 19,657	\$	78,628	
3.6	Angle 3 Pole Wood Structure, H1-100ft	1	Ea	\$ 7,776	16,471	\$	\$	24,247	
3.7	Tangent H-Frame Wood Structure, H2 85'	1	Ea	\$ 4,800	\$ 15,373	\$ 20,173	\$	20,173	
3.8	Tangent H -Frame Wood Structure, $\mathrm{H}^{2} 90^{\prime}$	118	Ea	\$ 5,760	\$ 18,448	\$ 24,208	\$	2,856,506	
3.9	Tangent H -Frame Wood Structure, $\mathrm{H}^{\text {2 }}$ 95'	11	Ea	\$ 6,912	\$ 22,137	\$ 29,049	5	319,541	
3.10	Tangent H-Frame Wood Structure, H2 100'	3	Ea	\$ 8,294	\$ 8 8,185	\$ 16,480	\$	49,439	
3.11	Tangent H -Frame Wood Structure, $\mathrm{H} 2105{ }^{\text {' }}$	1	Ea	\$ 9,953	\$ 6,925	\$ 16,878	\$	16,878	
3.12	Tangent H-Frame Wood Structure, $\mathrm{H} 2115^{\prime}$	1	Ea	\$	8,459	\$ 20,403	¢	20,403	
3.13	Tangent H-Frame Wood Structure, H2 125'	3	Ea	\$ 14,333	\$ 12,689	27,021	\$	81,064	
3.14	Install Grounding	153.0	Structure		\$ 5 5,000	\$ 5,000	\$	765,000	Supply \& Install
3.15	Guy Wires and Anchors for DE / Angle Structures	15.0	Structure		\$ 20,000	20,000	\$	300,000	Supply \& install
TOTAL - STRUCTURES TRANSMISSION LINE:							\$	4,688,312	

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
4. CONDUCTOR, SHIELDWIRE, OPGW												
4.1	(2)/Phase - 795kcmil 26/7 Stranded "Drake" ACSR	21	Circuit Mile	\$	53,856	\$	158,400	\$	212,256	\$	4,457,376	
4.2	(1) OPGW 48 Fiber	21	Mile	\$	22,176	\$	27,720	\$	49,896	\$	1,047,816	
4.3	(1) $3 / 8$ " HS Steel	21	Mile	\$	3,696	\$	26,400	\$	30,096	\$	632,016	
TOTAL: CONDUCTOR, SHIELDWIRE, OPGW:										\$	6,137,208	
5. TRANSMISSION LINE INSULATOR, FITTINGS, HARDWARE												
5.1	Tangent - Polymer V-String	414	Set	\$	900	\$	720	\$	1,620	\$	670,680	
5.2	Deadend / Angle Assemblies	96.0	Set	\$	1,500	\$	1,040	\$	2,540	\$	243,840	
5.3	OPGW Assembly - Tangent	138.0	Set	\$	200	\$	150	\$	350	\$	48,300	
5.4	OPGW Assembly - Angle / DE	34.0	Set	\$	250	\$	150	\$	400	\$	13,600	
5.5	OHSW Assembly - Tangent	138.0	Set	\$	200	\$	150	\$	350	\$	48,300	
5.5	OHSW Assembly - Angle / DE	34.0	Set	\$	250	\$	150	\$	400	\$	13,600	
5.8	OPGW Splice Boxes	9.0	Ea	\$	1,500	\$	1,000	\$	2,500	\$	22,500	
5.7	OPGW Splice \& Test	1.0	Sum			\$	10,800	\$	10,800	\$	10,800	
5.8	Spacer Dampers	2,310.0	Ea	\$	50	\$	35	\$	85	\$	196,350	
5.9	Vibration Dampers - Conductor	1,850.0	Ea	\$	32	\$	20	\$	52	\$	96,200	
5.10	Shieldwire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	10,000	\$	8,000	\$	18,000	\$	18,000	
TOTAL: TRANSMISSION LINE INSULA+52:63TORS, FITTINGS, HARDWARE:										\$	1,382,170	
6. NEW DYSINGER SWITCHYARD												
6.1	Site Works including sediment controls, access roads, rough grading, final	1.0	Sum			\$	1,650,000.00	\$	1,650,000	\$	1,650,000	Supply \& Install
6.2	Substation Fence	2,840.0	LF			\$	200.00	\$	200	\$	568,000	Supply \& Install
6.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
6.4	Switches 3ph	24.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	168,000	
6.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
6.6	Line Switches 3 ph w/ motor-operators	7.0	Ea	\$	15,000	\$	15,000.00	\$	30,000	\$	210,000	
6.7	Instrument Transformers	1.0	Sum			\$	1,214,000	\$	1,214,000	\$	1,214,000	
6.8	Breakers	11.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	4,180,000	
6.9	Arrestors (3 per line)	27.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	202,500	
6.10	Line Traps	7.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	147,000	
6.11	345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000	
6.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	
6.13	Low Profile Foundations	308.0	Ea			\$	5,000	\$	5,000	\$	1,540,000	Supply \& Install
6.14	Caisson DE Foundations	52.0	Ea			\$	50,000	\$	50,000	\$	2,600,000	Supply \& Install
6.15	Circuit Breaker Foundations	11.0	Ea			\$	75,000	\$	75,000	\$	825,000	Supply \& Install
6.16	Lightning Mast Foundations	5.0	Ea			\$	15,000	\$	15,000	\$	75,000	Supply \& Install
6.17	SST Foundation	1.0	Ea			\$	75,000.00	\$	75,000	\$	75,000	Supply \& Install
6.18	Control House and Pad ($30^{\prime} \times 90^{\prime}$)	1.0	Ea	\$	650,000	\$	200,000	\$	850,000	\$	850,000	
6.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
6.20	Control Cables	1.0	Sum	\$	150,000	\$	150,000	\$	300,000	\$	300,000	
6.21	125VDC Batteries	2.0	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
6.22	Station Services	2.0	Ea	\$	-	\$	25,000	\$	25,000	\$	50,000	
6.23	Protection, Telecom and Metering Equipment (Panels)	40.0	Ea			\$	30,000	\$	30,000	\$	1,200,000	Supply \& Install
6.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
6.26	Control Conduits from Cable Tray to Equipment	1.0	Sum			\$	357,500	\$	357,500	\$	357,500	Supply \& Install
6.27	Cable Trench Systems for Control Cables	1.0	Sum			\$	975,000	\$	975,000	\$	975,000	Supply \& Install
6.28	Grounding	1.0	Sum			5	275,000	\$	275,000	\$	275,000	Supply \& Install
6.29	Bus Support 3 Ph	23.0	Ea	\$	4,500	\$	2,000	\$	6,500	\$	149,500	
6.30	Bus Support 1 Ph	42.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	126,000	

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
6.31	Switch Stands	26.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	286,000	
6.32	Fuse Stand	1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
6.33	Misc. Structures	1.0	Sum			\$	74,000	\$	74,000	\$	74,000	
6.34	Substation A-Frame Structures Standalone	13.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	325,000	
6.35	Lightning Masts	5.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	60,000	
6.36	Arrestor Stands	21.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	73,500	
6.37	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
6.38	Connection of Existing Lines to Dysinger Switchyard	1.0	Sum			\$	5,000,000	\$	5,000,000	\$	5,000,000	Supply \& Install
6.39	345 kV 700MVA Phase Shifting Transformer	1.0	Sum	\$	11,000,000	\$	500,000	\$	11,500,000	\$	11,500,000	
6.40	Transformer Foundation with concrete moat and double steel grating	1.0	Sum			\$	150,000	\$	150,000	\$	150,000	Supply \& Install
TOTAL - DYSINGER SWITCHYARD:										\$	37,852,000	
7. EAST STOLLE RD SUBSTATION												
7.1	Site Works including sediment controls, access roads, rough grading, final	1.0	Sum			\$	1,000,000.00	\$	1,000,000	\$	1,000,000	Supply \& Install
7.2	Substation Fence	1,900.0	LF			\$	200.00	\$	200	\$	380,000	Supply \& Install
7.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
7.4	Switches 3ph	9.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	63,000	
7.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
7.6	Line Switches 3 ph w/ motor-operators	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
7.7	Instrument Transformers	1.0	Sum			\$	752,000	\$	752,000	\$	752,000	
7.8	Breakers	4.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	1,520,000	
7.9	Arrestors (3 per line) and shunt reactor	12.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	90,000	
7.10	Line Traps	2.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	42,000.00	
7.11	345 kV buses	1.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	60,000	
7.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	
7.13	Low Profile Foundations	147.0	Ea			\$	5,000	\$	5,000	\$	735,000	Supply \& Install
7.14	Caisson DE Foundations	20.0	Ea			\$	50,000	\$	50,000	\$	1,000,000	Supply \& Install
7.15	Circuit Breaker Foundations	4.0	Ea			\$	75,000	\$	75,000	\$	300,000	Supply \& Install
7.16	Lightning Mast Foundations	5.0	Ea			\$	15,000	\$	15,000	\$	75,000	Supply \& Install
7.17	SST Foundation	1.0	Ea			\$	75,000.00	\$	75,000	\$	75,000	Supply \& Install
7.18	Control House and Pad (25' $\times 50^{\prime}-1250$ sq. ft)	1.0	Ea	\$	350,000	\$	100,000	\$	450,000	\$	450,000	
7.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
7.20	Control Cables	1.0	Sum	\$	130,000	\$	130,000	\$	260,000	\$	260,000	
7.21	125VDC Batteries	2.0	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
7.22	Station Services	2.0	Ea			\$	25,000	\$	25,000	\$	50,000	
7.23	Protection, Telecom and Metering Equipment (Panels)	18.0	Ea			\$	30,000	\$	30,000	\$	540,000	Supply \& Install
7.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
7.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
7.26	Control Conduits from Cable Tray to Equipment	1.0	Sum			\$	357,500	\$	357,500	\$	357,500	Supply \& Install
7.27	Cable Trench Systems for Control Cables	1.0	Sum			\$	975,000	\$	975,000	\$	975,000	Supply \& Install
7.28	Grounding	1.0	Sum			\$	125,000	\$	125,000	\$	125,000	Supply \& Install
7.29	Bus Support 3 Ph	9.0	Ea	\$	4,500	\$	2,000	\$	6,500	\$	58,500	
7.30	Bus Support 1 Ph	21.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	63,000	
7.31	Switch Stands	13.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	143,000	
7.32	Fuse Stand	1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
7.33	Misc. Structures	1.0	Sum			\$	24,000	\$	24,000	\$	24,000	
7.34	Substation A-Frame Structures Standalone	5.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	125,000	
7.35	Lightning Masts	5.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	60,000	
7.36	Arrestor Stands	12.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	42,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate:		TOTAL:		Remarks
7.37	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
7.38	345 kV 30MVAR Shunt Reactor	1.0	Ea	732,000	100,000	\$	832,000	\$	832,000	
7.39	Transformer Foundation with concrete moat and double steel grating	1.0	Sum		150,000	\$	150,000	\$	150,000	Supply \& Install
7.40	Interconnection arrangement at Stolle Rd Substation	1.0	Sum		1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
TOTAL - EAS	T STOLLE RD SUBSTATION:							\$	13,963,000	
8. MOB/DE	MOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS									
	Contractor Mobilization / Demobilization									
8.1	Mob / Demob	1.00	Sum		800,000	\$	800,000	\$	800,000	
	Project Management, Material Handling \& Amenities					\$	-	\$	-	
8.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision, Scheduler and Cost Manager, SHEQ Staff, Admin, Materials Management Staff)	14.00	Months		220,000	\$	220,000	\$	3,080,000	
8.3	Site Accommodation, Facilities, Storage	1.00	Sum		1,400,000	\$	1,400,000	S	1,400,000	
	Engineering					\$	-	5	-	
8.4	Design Engineering	1.00	Sum		\$ 3,600,000	\$	3,600,000	\$	3,600,000	
8.5	Lidar	1.00	Sum		\$ 400,000	\$	400,000	\$	400,000	
8.6	Geotech	1.00	Sum		\$ 600,000	\$	600,000	\$	600,000	
8.7	Surveying/Staking	1.00	Sum		\$ 400,000	\$	400,000	\$	400,000	
	Testing \& Commissioning									
8.8	Testing \& Commissioning of TRANSMISSION LINE and Equipment	1.00	Sum		1,600,000	\$	1,600,000	\$	1,600,000	
	Permitting and Additional Costs					\$	-	\$	-	
8.9	Environmental Licensing \& Permitting Costs	1.00	Sum		2,312,325	\$	2,312,325	5	2,312,325	
8.10	Environmental Mitigation	1.00	Sum		\$ 9,472,635	\$	9,472,635	\$	9,472,635	
8.11	Warranties / LOC's	1.00	Sum		\$ 459,515	\$	459,515	\$	459,515	
8.12	Real Estate Costs (New ROW)	1.00	Sum		\$ 391,346	S	391,346	\$	391,346	
8.13	Real Estate Costs (Incumbent Utility ROW)	1.00	Sum		1,793,000	\$	1,793,000	\$	1,793,000	
8.14	Legal Fees	1.00	Sum		2,000,000	\$	2,000,000	\$	2,000,000	
8.15	Sales Tax on Materials	1.00	Sum	\$ 3,219,867		\$	3,219,867	\$	3,219,867	
8.16	Fees for permits, including roadway, railroad, building or other local permits	1.00	Sum		200,000	\$	200,000	\$	200,000	
8.17	Allowance for Funds Used During Construction (AFUDC)	1.00	Sum			\$	-	\$	-	
8.18	Carrying Charges	1.00	Sum			\$	-	\$	-	
TOTAL - MO	B/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:							\$	31,728,688	
9. SYSTEM	JPGRADE FACILITIES									
SUF 1.1	Depew to Erie Street 115kV Transmission Line 921. Terminal allowance included. See comments.	1.00	Sum		500,000	\$	500,000	\$	500,000	Relay was replaced and line ratings increased to 124/137/158 (NOR/LTE/STE) resulting ratings are below line conductor
SUF 1.2	Engineering, T\&C, PM, Indirects for SUF 1.1 (15\%)					\$	-	\$	75,000	ratings. Scope is to remove all limitations on the circuit so it is limited by line conductor ratings 125/152/181 (NOR/LTE/STE).
SUF 2.1	Shawnee to Swann Reconductor	12.00	Mile		400,000	\$	400,000	\$	4,800,000	Rate for reconductor is pro-rated from National Grid Niagara - Packard reconductor. Note that rate does not
SUF 2.2	Engineering, T\&C, PM, Indirects FOR SUF 2.2 (15\%)					\$	-	\$	720,000	include upgrades to structures or foundations.

 22 miles of new $\mathbf{3 4 5 k V}$ Transmission Line, located in Erie County and Niagara County (Empire State Line). This estimate includes for the Developers Alternate Route which uses Steel Poles.

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
5.3	OPGW Assembly - Tangent	150.0	Set	\$	200	\$	150	\$	350	\$	52,500	
5.5	OPGW Assembly - Angle / DE	72.0	Set	\$	250	\$	150	\$	400	\$	28,800	
5.6	OHSW Assembly - Angle / DE	15.0	Set	\$	250	\$	150	\$	400	\$	6,000	
5.8	OPGW Splice Boxes	10.0	Ea	\$	1,500	\$	1,000	\$	2,500	\$	25,000	
5.9	OPGW Splice \& Test	1.0	Sum			\$	12,000	\$	12,000	\$	12,000	
5.10	Spacer Dampers	2,835.0	Ea	\$	50	\$	35	\$	85	\$	240,975	
5.11	Vibration Dampers - Conductor	2,268.0	Ea	S	32	\$	20	\$	52	\$	117,936	
5.12	Shield wire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	15,000	\$	8,000	\$	23,000	\$	23,000	
TOTAL: TRANSMISSION LINE INSULATORS, FITTINGS, HARDWARE:										\$	1,829,571	
6. NEW DYSINGER SUBSTATION												
6.1	Site Works including sediment controls, access roads, rough grading, final grading and	1.0	Sum			\$	1,650,000.00	\$	1,650,000	\$	1,650,000	Supply \& Install
6.2	Substation Fence	2,840.0	LF			\$	200.00	\$	200	\$	568,000	Supply \& Install
6.3	SSVT	1.0	Ea	5	200,000	\$	50,000	\$	250,000	\$	250,000	
6.4	Switches 3ph	24.0	Ea	5	5,000	\$	2,000	\$	7,000	\$	168,000	
6.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
6.6	Line Switches 3 ph w/motor-operators	7.0	Ea	\$	15,000	\$	15,000.00	\$	30,000	\$	210,000	
6.7	Instrument Transformers	1.0	Sum			\$	1,214,000	\$	1,214,000	\$	1,214,000	
6.8	Breakers	11.0	Ea	S	300,000	\$	80,000	\$	380,000	\$	4,180,000	
6.9	Arrestors (3 per line)	27.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	202,500	
6.10	Line Traps	7.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	147,000	
6.11	345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000	
6.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	
6.13	Low Profile Foundations	308.0	Ea			\$	5,000	\$	5,000	\$	1,540,000	Supply \& Install
6.14	Caisson DE Foundations	52.0	Ea			\$	50,000	\$	50,000	\$	2,600,000	Supply \& Install
6.15	Circuit Breaker Foundations	11.0	Ea			\$	75,000	S	75,000	\$	825,000	Supply \& Install
6.16	Lightning Mast Foundations	5.0	Ea			\$	15,000	5	15,000	\$	75,000	Supply \& Install
6.17	SST Foundation	1.0	Ea			\$	75,000.00	\$	75,000	\$	75,000	Supply \& Install
6.18	Control House and Pad ($30^{\prime} \times 90$)	1.0	Ea	\$	650,000	\$	200,000	\$	850,000	\$	850,000	
6.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
6.20	Control Cables	1.0	Sum	S	150,000	\$	150,000	\$	300,000	\$	300,000	
6.21	125VDC Batteries	2.0	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
6.22	Station Services	2.0	Ea	\$	-	\$	25,000	\$	25,000	\$	50,000	
6.23	Protection, Telecom and Metering Equipment (Panels)	40.0	Ea			\$	30,000	\$	30,000	\$	1,200,000	Supply \& Install
6.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
6.26	Control Conduits from Cable Tray to Equipment	1.0	Sum			\$	357,500	\$	357,500	\$	357,500	Supply \& Install
6.27	Cable Trench Systems for Control Cables	1.0	Sum			\$	975,000	\$	975,000	\$	975,000	Supply \& Install
6.28	Grounding	1.0	Sum			\$	275,000	\$	275,000	\$	275,000	Supply \& Install
6.29	Bus Support 3 Ph	23.0	Ea	\$	4,500	\$	2,000	\$	6,500	\$	149,500	
6.30	Bus Support 1 Ph	42.0	Ea	S	2,000	S	1,000	5	3,000	\$	126,000	
6.31	Switch Stands	26.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	286,000	
6.32	Fuse Stand	1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
6.33	Misc. Structures	1.0	Sum			\$	74,000	\$	74,000	\$	74,000	
6.34	Substation A-Frame Structures Standalone	13.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	325,000	
6.35	Lightning Masts	5.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	60,000	
6.36	Arrestor Stands	21.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	73,500	
6.37	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
6.38	Connection of Existing Lines to Dysinger Switchyard	1.0	Sum			\$	5,000,000	\$	5,000,000	\$	5,000,000	Supply \& Install
6.39	345kV 700MVA Phase Shifting Transformer	1.0	Sum	\$	11,000,000	\$	500,000	S	11,500,000	\$	11,500,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
8.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision, Scheduler and Cost Manager, SHEQ Staff, Admin, Materials Management Staff)	14.00	Months		\$	350,000	\$	350,000	\$	4,900,000	
8.3	Site Accommodation, Facilities, Storage	1.00	Sum		\$	1,400,000	\$	1,400,000	\$	1,400,000	
	Engineering										
8.4	Design Engineering	1.00	Sum		\$	4,770,000	\$	4,770,000	\$	4,770,000	
8.5	LidAR	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	
8.6	Geotech	1.00	Sum		\$	1,100,000	\$	1,100,000	\$	1,100,000	
8.7	Surveying/Staking	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	
	Testing \& Commissioning										
8.8	Testing \& Commissioning of TRANSMISSION LINE and Equipment	1.00	Sum		\$	1,600,000	\$	1,600,000	\$	1,600,000	
	Permitting and Additional Costs						\$	-	\$	-	
8.9	Environmental Licensing \& Permitting Costs	1.00	Sum		\$	3,477,113	\$	3,477,113	\$	3,477,113	
8.10	Environmental Mitigation	1.00	Sum		\$	8,002,635	\$	8,002,635	\$	8,002,635	
8.11	Warranties / LOC's	1.00	Sum		\$	575,441	\$	575,441	\$	575,441	
8.12	Real Estate Costs (New ROW)	1.00	Sum		\$	7,993,538	\$	7,993,538	\$	7,993,538	
8.13	Real Estate Costs (Incumbent Utility ROW)	1.00	Sum		\$	90,000	\$	90,000	\$	90,000	
8.14	Legal Fees	1.00	Sum		\$	3,500,000	\$	3,500,000	\$	3,500,000	
8.15	Sales Tax on Materials	1.00	Sum	\$ 4,064,839			\$	4,064,839	\$	4,064,839	
8.16	Fees for permits, including roadway, railroad, building or other local permits	1.00	Sum		\$	200,000	\$	200,000	\$	200,000	
8.17	Allowance for Funds Used During Construction (AFUDC)	1.00	Sum				\$	-	\$	-	
8.18	Carrying Charges	1.00	Sum				\$	-	\$	-	
TOTAL - M	MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:								\$	43,673,566	
9. SYSTEM	UPGRADE FACILITIES										
SUF 1.1	Depew to Erie Street 115kV Transmission Line 921. Terminal allowance included. See comments.	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	Relay was replaced and line ratings increased to 124/137/158 (NOR/LTE/STE) resulting ratings are below line conductor
SUF 1.2	Engineering, T\&C, PM, Indirects for SUF 1.1 (15\%)						\$	-	\$	75,000	ratings. Scope is to remove all limitations on the circuit so it is limited by lien conductor ratings 125/152/181 (NOR/LTE/STE).
SUF 2.1	Shawnee to Swann Reconductor	12.00	Mile		\$	400,000	\$	400,000	\$	4,800,000	Rate for reconductor is pro-rated from National Grid Niagara - Packard reconductor. Note that rate does not
SUF 2.2	Engineering, T\&C, PM, Indirects FOR SUF 2.2 (15\%)						\$	-	\$	720,000	include upgrades to structures or foundations.
SUF 3.1	Roll Rd to Stolle Rd 115kV Transmission Line 928. Terminal allowance included. See comments.	1.00	Sum		\$	500,000	\$	500,000	\$	500,000	Replace limiting terminal equipment at both Stolle Rd 115 kV Substation and Roll
SUF 3.2	Engineering, T\&C, PM, Indirects for SUF 3.1 (15\%)						\$	-	\$	75,000	Rd 115 kV Substation.
SUF 4	100MVAR Shunt Reactor at RG\&E Sta 80										
SUF 4.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement - approx 1. acre	1.00	Sum		\$	1,500,000	\$	1,500,000	\$	1,500,000	Supply \& Install
SUF 4.2	Substation Fence	600.00	LF		\$	200	\$	200	\$	120,000	Supply \& Install
SUF 4.3	Shunt Reactor 3ph 345kV 100MVAR	1.00	Ea	\$ 1,500,000	\$	500,000	\$	2,000,000	\$	2,000,000	
SUF 4.4	Switches 3ph 345kV	1.00	Ea	\$ 15,000	\$	15,000	\$	30,000	\$	30,000	
SUF 4.5	CVT's 345kV	3.00	Ea	13,000	\$	8,000	\$	21,000	\$	63,000	
SUF 4.6	Breakers 345kV	1.00	Ea	\$ 300,000	\$	80,000	\$	380,000	\$	380,000	
SUF 4.7	Arrestors - 235kV	3.00	Ea	\$ 6,500	\$	1,000	\$	7,500	\$	22,500	
SUF 4.8	Low Profile Foundations	19.00	Ea		\$	5,000	\$	5,000	\$	95,000	Supply \& Install

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		it Rate:		TOTAL:	Remarks
SUF 4.9	Circuit Breaker Foundations	1.00	Ea		75,000	\$	75,000	\$	75,000	Supply \& Install
SUF 4.10	Lightning Mast Foundations	2.00	Ea		15,000	\$	15,000	\$	30,000	Supply \& Install
SUF 4.11	Reactor Foundation with concrete moat and double steel grating	1.00	Ea		150,000	\$	150,000	\$	150,000	Supply \& Install
SUF 4.12	Control Cables	1.00	Sum	100,000	100,000	\$	200,000	\$	200,000	
SUF 4.13	Protection \& Telecom Equipment	3.00	Ea		15,000	\$	15,000	\$	45,000	Supply \& Install
SUF 4.14	SCADA and Communications	1.00	Sum		\$ 250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.15	Low Voltage AC Distribution	1.0	Sum		300,000	\$	300,000	\$	300,000	Supply \& Install
SUF 4.16	Control Conduits	1.0	Sum		250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.17	Cable Trench System for Control Conduits	1.0	Sum		750,000	\$	750,000	\$	750,000	Supply \& Install
SUF 4.18	Grounding	1.0	Sum		250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.19	Bus Support 3ph	2.0	Ea	3,000	2,000	\$	5,000	\$	10,000	
SUF 4.20	Bus Support 1ph	3.0	Ea	2,000	1,000	\$	3,000	\$	9,000	
SUF 4.21	Switch Stands	1.0	Ea	\$ 1,500	800	\$	2,300	\$	2,300	
SUF 4.22	Fuse Stand	1.0	Ea	\$ 1,500	800	\$	2,300	\$	2,300	
SUF 4.23	CVT Stand	3.0	Ea	\$ 2,500	\$ 1,000	\$	3,500	\$	10,500	
SUF 4.24	Lightning Mast	2.0	Ea	\$ 10,000	5,000	\$	15,000	\$	30,000	
SUF 4.25	Misc Materials and Above / Below Ground Works	1.0	Ea		\$ 1,500,000	\$	1,500,000	\$	1,500,000	Supply \& Install
SUF 4.26	Engineering, T\&C, PM, Indirects (15\%)					\$	-	\$	1,211,190	
SUF 5	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)							\$	3,750,000	Contingency for possible additional SUF upgrades
TOTAL-SUF								\$	19,705,790	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T014			
FEDERAL						Preferred Route		Alternative Route	
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan	\$26,600	\$88,250	\$26,600	\$88,250
National Park Service	National Parks	Consultation; Special Use Permit	Only applies if National Park located in project area.	Depending on impact of project request for a special use permit may require a NEPA environmental assessment.					
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$27,800	\$94,000	\$30,300	\$99,000
NEPA	National Environmental Policy Act	Categorical Exclusion; EA Finding of No Impact; or EIS Record of Decision	With some exemptions, projects on federally owned lands and/or projects requiring federal permit approvals	Possible NEPA review due if federal agency coordination is required. Federal agency involved to determine if Categorical Exclusion applies. Assumes Article 7 covers NEPA requirements or if an EIS is required it is prepared under SEQRA Task.					
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)				
STATE									
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans				
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Article VII Intervenor Fund payment expected to be $\$ 100,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans	\$600,000	\$3,100,000	\$600,000	\$3,100,000

NYS Public Service Commission / Department of Public Service (NYSDPS)	Part 102		Construction of a utility overhead transmission facility that will convey electric energy at 65 kV or higher for a distance of one mile or longer and are not subject to Article VII of the Public Service Law.	May include coordination or studies completed under other line items including: Visual assessment, SHPO determination, OPRHP consultation, Ecological Impacts Assessment	Advantage-Disadvantage Analysis				
NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan				
						\$12,000	\$53,000	\$12,000	\$53,000
NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additiona coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)				
						\$11,200	\$38,000	\$11,200	\$38,000
Any State or local government agency that issues permits or approvals	State Environmental Quality Review Act (SEQRA)	Environmental Assessment (EA) Determination of Significance	Projects not covered as a Type II Action (Note a project can not be segmented - all phases/tasks must be considered in the review)	Most projects or activities proposed by a state agency, and all discretionary approvals (permits) from a NYS agency or local government, require an environmental impact assessment. SEQR requires the sponsoring or approving governmental body to identify and mitigate the significant environmental impacts of the activity it is proposing or permitting.					
NYSDOS	State Coastal Management Program Mapped Coastal Area Boundary	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coastal Zone; and consistency with Local Waterfront Revitalization Plans (LWRPs); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)					
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies	\$13200	\$49,000	\$14200	\$52000
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400	\$1,200	\$6,400

NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$69,000	\$17,000	\$69,000
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee $=\$ 25$ plus $\$ 2,000,000$ additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)				
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2 -yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000	\$11,000	\$24,000
REGIONAL									
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$76,000	\$11,000	\$76,000
LOCALIMUNICIPAL									
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans				
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000	\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000	\$6,000	\$35,000
Town, City or Village	Variable	Building Permits	New Structures	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$18,000	\$92,000	\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways			\$6,000	\$35,000	\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000	\$6,000	\$52,000
						Minimum	Maximum	Minimum	Maximum
ENVIRONMENTAL LICENSING \& PERMITTING COST (EXCLUDING MITIGATION)					PROJECT T014 TOTAL	\$773,000	\$3,851,650	\$776,500	\$3,859,650
Excluded cost: Mitigation or restoration for impact to regulated wetlands; agricultural land and tree clearing					Expected Value	\$2,312,325		\$3,477,112.50	

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T014-NextEra Energy

SUBSTATION ENGINEERING
COMPAN Y

ENVIRONMENTAL MITIGATION ESTIMATE

WNY TRANSMISSION PROJECT - ENVIRONMENTAL MITIGATION COST ESTIMATE FOR T014

	Offsite Wetland Mitigation*			Farmland** $^{c \mid}$		Alternative Rotue		Preferred \& Alternative Routes	
	Preferred Route		Min.	Max.	Min.	Max.			
	Min.	Max.	45 acres	38 acres	38 acres	30 acres			
Area	45 acres	$\$ 60$ acres							
Cost/Acre	$\$ 60,000$	$\$ 120,000$	$\$ 60,000$	$\$ 120,000$	$\$ 503$	$\$ 503$			
Ratio	$1: 1$	$3: 1$	$1: 1$	$3: 1$	$1: 1$	$1: 1$			
Total	$\$ 2,700,000$	$\$ 16,200,000$	$\$ 2,280,000$	$\$ 13,680,000$	$\$ 15,090$	$\$ 30,180$			

TO14 PREFERRED ROUTE MITIGATION TOTAL	Minimum	Maximum	Expected Value
	$\mathbf{\$ 2 , 7 1 5 , 0 9 0}$	$\mathbf{\$ 1 6 , 2 3 0 , 1 8 0}$	$\mathbf{\$}$
$\mathbf{9}, \mathbf{4 7 2 , 6 3 5}$			

to14 Alternative route MITIGATION TOTAL	Minimum	Maximum	Expected Value
	$\mathbf{\$ 2 , 2 9 5 , 0 9 0}$	$\mathbf{\$ 1 3 , 7 1 0 , 1 8 0}$	$\mathbf{\$}$

*Offsite wetland mitigation area assumes clearing of NWI Forested/Shrub Wetland approx. 3.24 miles (17107 LF) by 115' ROW width for the Preferred Route and approx. 3.47 (18322 LF) by 90' ROW width for the Alternative Route; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in non-forested wetlands; costing includes design and installation costs only; does not include land acquisition or long term monitoring
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 9.8 miles (51744 LF) Land Adjacent to Agriculture District/Crop Land by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Client: NYISO
Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T014 - NextEra Energy

COUNTY:
ERIE DEVELOPER: SEGMENT:
NEXTERA (TO14 \& T015 PREFERRED) DYSINGER - STOLLE SEGMENT

Client: NYISO
Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T014 - NextEra Energy
REAL ESTATE ESTIMATE
SUBSTATION ENGINEERING
COMPAN

COUNTY: DEVELOPER: SEGMENT:		NIAGARA \& ERIE NEXTERA (T014 \& T015 PREFERRED) DYSINGER - STOLLE SEGMENT			
	DEVELOPER	SEGMENT	COUNTY	INCUMBENT UTILITY (ROW)	total ROW COST
				(ACRES)	
1	NEXTERA ENERGY	Dysinger SS to Stolle Rd SS - 19.93 miles	Niagara	4.59	1,793,000
			Erie	355.48	

REAL ESTATE ESTIMATE

COUNTY: DEVELOPER: SEGMENT:		NIAGARA \& ERIE NEXTERA (T014 \& T015 ALTERNATIVE) dYsinger to stolle road segment		
	Address	Area (Acres)		Total Cost
A NIAGARA COUNTY				
	Sub Total (A)	5.30	\$	124,550.00

	Total (A + B)	197.05	\$	$5,697,097.00$

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T014 - NextEra Energy

REAL ESTATE ESTIMATE

COUNTY:
NEVELOPER: DEVARA \& ERIE SEGMENT:
NEXTERA (TO14 \& T015 ALTERNATIVE) DYSINGER - STOLLE SEGMENT

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T014-NextEra Energy

REAL ESTATE ESTIMATE

COUNTY:
l ERIE DEVELOPER: SEGMENT: NEXTERA (T014 \& T015 ALTERNATIVE) DYSINGER - STOLLE SEGMENT

Client: NYISO
Project: Western Transmission Project Evaluation
SEED
Subject: Cost Estimate
Document No: T014 - NextEra Energy

REAL ESTATE ESTIMATE

Client: NYISO
Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T014 - NextEra Energy

REAL ESTATE ESTIMATE

COUNTY:
DEVELOPER:
SEGMENT:

ERIE
NEXTERA
STOLLE ROAD SUBSTATION

		Total Cost	
	Total Cost of Proposed Substation Site	$\$$	$135,520.00$

Revision: 5

ASSUMPTIONS AND CLARIFICATIONS

a) Cost Estimate is based on 2017 rates.
b) Construction Schedule is in accordance with the Developers proposed schedule (6 months for construction - seems light) - we have assumed continuous
working with no breaks in the schedule. Six months added for start up and close out works and assisting in pre-construction activities (i.e. permitting
activates, material procurement etc.)
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6 x 10 hour days).
e) Wood Pole types are based on Plan and Profile drawings. Direct embed foundations are assumed to be 10% plus 2 ft and rates include backfill. Steel Pole
weights and foundation types are estimated based on benchmark data.
f) We have assumed that the Access Road upgrades include gravel updates only.
g) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies.
h) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes. i) The equipment types listed for Dysinger and East Stolle Rd Substation have been taken from a recently completed 345kV substation project, using current pricing. j) Estimated quantities have been used for items in red text in Section 1 of the Estimate (CLEARING \& ACCESS FOR T-LINE CONSTRUCTION). These items were not quantified in the Developers Estimate, however we believe that they are necessary for the works. k) A Contractor Mark-Up (OH\&P) of 15\% has been included in the Total section I) Assumes all environmental data and project details provided are accurate unless noted otherwise. m) USFWS T\&E assumes $1 / 4$ of the total Preferred Route will require field survey for T\&E (5 miles). n)USFWS T\&E assumes $1 / 4$ of the total Alternative Route will require field survey for T\&E (5. 5 miles). o) NEPA-Assumes no NEPA because Art VII. p) SHPO-Assumes consultation and Phase 1A/1B archeological studies with field survey for 50% of Preferred Route (10 miles) and Alternative Route (11 miles). q) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII. r) Assumes no coordination with National Parks Service or OPRHP/State Parks. s) USACE wetland delineation total for Preferred and Alternative Routes is based on combined NYSDEC/USACE wetland length of 3.9 miles from information in Proposal Attachment C. t) NYSDEC delineations overlap and are accounted for in USACE costing.

ASSUMPTIONS AND CLARIFICATIONS

Revision: 5
u) Offsite wetland mitigation area costs for the Preferred Route based on impacts anticipated by clearing of NWI Forested/Shrub Wetland of approximately 3.24 miles (calculated by GEI based on NWI mapper legend categories). Assumes clearing an additional 115 feet within Right of Way. Minimum costs $\$ 60,000 /$ acre at $1: 1$ ratio, maximum costs at $\$ 120,000 /$ acre at $3: 1$ ratio for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring.
v) Offsite wetland mitigation area costs for the Alternative Route based on impacts anticipated by clearing of NWI Forested/Shrub Wetland of approximately 3.47 calculated by GEI based on NWI mapper legend categories). Assumes clearing 90 wide feet within Right of Way. Minimum costs at $\$ 60,000 /$ acre at $1: 1$ ratio, maximum costs at $\$ 120,000 /$ acre at $3: 1$ ratio for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring.
w) Agricultural mitigation for Preferred and Alternative Routes assumes timber matting impacts and pad impacts on adjacent agriculture land (9.8 miles) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25 -foot-wide impact, Maximum assumes 50 -foot-wide impact.
x) Assumes Right of Way restoration is accounted for in construction costs.
y) Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.).
z) No tree survey or replanting required outside regulated wetlands areas.
aa) Article VII Intervenor Fund payment expected to be $\$ 100,000$.
ab) Expected value of Alt. Route is estimated to be 50% higher than the mean of the range of environmental licensing and permitting costs due to new ROW.
ac) SUF pricing is included at the end of the estimate workbook (costs excluded from main estimate).
ad) SUF pricing includes 35% to cover Contractor markup (15\%) and contingency (20\%)
ae) Reconductor pricing (SUF 2 - Shaw to Swan Reconductor) is based on Niagara-Packard (National Grid) reconductor estimate, pro-rated to a rate / mile. Note that this is based on conductor, shieldwire and hardware pricing only and does not include structure or foundation works.
af) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

ATTACHMENT B9
T015 - NEXTERA ENERGY

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T015-NextEra Energy
SUBSTATION ENGINEERING

SUMMARY OF COST ESTIMATE

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate		Rate:		TAL:	Remarks
1. CLEARING \& ACCESS FOR TRANSMISSION LINE CONSTRUCTION										
1.1	Clearing the ROW (mowing \& clearing)	139.0	Acre		\$ 15,000	\$	15,000	\$	2,085,000	
1.2	Access Road	48,535.0	LF		\$ 45	\$	45	\$	2,184,075	Assumes Type 1 Type Gravel Road
1.3	Silt Fence	48,535.0	LF		\$	\$	4	\$	194,140	
1.4	Matting	56,952.0	LF		\$ 70	\$	70	\$	3,986,640	
1.5	Snow Removal	1.0	Sum		\$ 320,000	\$	320,000	\$	320,000	
1.6	ROW Restoration	20.0	Mile		\$ 10,000	\$	10,000	\$	200,000	
1.7	Work Pads	795,000.00	SF		\$ 4	\$	4	\$	2,798,400	
1.8	Restoration for Work Pad areas	79,500.00	SF		$\begin{array}{ll}\text { \$ } & 0.2\end{array}$	\$	0.2	\$	11,925	
1.9	Temporary Access Bridge	20.0	EA		\$ 20,035	\$	20,035	\$	400,700	
1.10	Air Bridge	5.0	EA		\$ 14,445	\$	14,445	\$	72,225	
1.11	Stabilized Construction Entrance	10.0	EA		\$ 4,580	\$	4,580	\$	45,800	
1.12	Maintenance and Protection of Traffic on Public Roads	1.0	LS		\$ 300,000	\$	300,000	\$	300,000	
1.13	Culverts / Misc. Access	1.0	LS		\$ 100,000	\$	100,000	\$	100,000	
1.14	Concrete Washout Station	10.0	EA		\$ 1,850	\$	1,850	\$	18,500	
TOTAL - CLEARING \& ACCESS FOR TRANSMISSION LINE:								\$	12,717,405	
2. TRANSMISSION LINE FOUNDATIONS										
2.1	Direct Embed Foundation $3^{\prime} \times 11^{\prime}$	267.0	Ea		\$ 9,680	\$	9,680	\$	2,584,560	Supply \& Install
2.2	Direct Embed Foundation $3^{\prime} \times 12^{\prime}$	35.0	Ea		\$ 10,648	\$	10,648	\$	372,680	Supply \& Install
2.3	Direct Embed Foundation $3^{\prime} \times 13^{\prime}$	8.0	Ea		\$ 11,713	\$	11,713	\$	93,702	Supply \& Install
2.4	Direct Embed Foundation $3^{\prime} \times 14^{\prime}$	5.0	Ea		\$ 12,884	\$	12,884	\$	64,420	Supply \& Install
2.5	Direct Embed Foundation $3^{\prime} \times 15^{\prime}$	6.0	Ea		\$ 14,172	\$	14,172	\$	85,035	Supply \& Install
TOTAL - TRANSMISSION LINE FOUNDATIONS:								\$	3,200,398	
3. STRUCTURES - TRANSMISSION LINE										
3.1	Dead-End 3 Pole Wood Structure, H2 80ft	5	Ea	\$ 6,000	\$ 8,185	\$	14,185	\$	70,927	
3.2	Dead-End 3 Pole Wood Structure, H2 9 9ft	2	Ea	7,200	\$ 6,925	\$	14,125	\$	28,250	
3.3	Dead-End 3 Pole Wood Structure, H 2100 ft	2	Ea	\$ 8,640	\$ 8,459	\$	17,099	\$	34,198	
3.4	Dead-End 3 Pole Wood Structure, H2 110ft	1	Ea	\$ 10,368	\$ 12,689	\$	23,057	\$	23,057	
3.5	Angle 3 Pole Wood Structure, H1-90ft	4	Ea	\$ 6,480	\$ 13,177	\$	19,657	\$	78,628	
3.6	Angle 3 Pole Wood Structure, H1-100ft	1	Ea	\$ 7,776	16,471	\$	24,247	\$	24,247	
3.7	Tangent H-Frame Wood Structure, H2 85'	1	Ea	\$ 4,800	\$ 15,373	\$	20,173	\$	20,173	
3.8	Tangent H -Frame Wood Structure, $\mathrm{H}^{\text {2 }} 9 \mathrm{O}^{\prime}$	118	Ea	\$ 5,760	\$ 18,448	\$	24,208	\$	2,856,506	
3.9	Tangent H -Frame Wood Structure, $\mathrm{H} 295{ }^{\text {9 }}$	11	Ea	\$ 6,912	\$ 22,137	\$	29,049	\$	319,541	
3.10	Tangent H-Frame Wood Structure, $\mathrm{H} 2100^{\prime}$	3	Ea	\$	\$	\$	16,480	\$	49,439	
3.11	Tangent H-Frame Wood Structure, H2 105'	1	Ea	\$ 9,953	\$ 6,925	\$	16,878	\$	16,878	
3.12	Tangent H-Frame Wood Structure, $\mathrm{H} 2115{ }^{\text {' }}$	1	Ea	\$ 11,944	\$ 8,459	\$	20,403	\$	20,403	
3.13	Tangent H-Frame Wood Structure, $\mathrm{H} 2125{ }^{\text {' }}$	3	Ea	\$ 14,333	\$ 12,689	\$	27,021	\$	81,064	
3.14	Install Grounding	153.0	Structure		\$ 5,000	\$	5,000	\$	765,000	Supply \& Install
3.15 Guy Wires and Anchors for DE / Angle Structures TOTAL - STRUCTURES TRANSMISSION LINE:		15.0	Structure		\$ 20,000	\$	20,000	\$	300,000	Supply \& install
								\$	4,688,312	
4. CONDUCTOR, SHIELDWIRE, OPGW										
4.1	(2)/Phase - 795kcmil 26/7 Stranded "Drake" ACSR	21	Circuit Mile	\$ 53,856	\$ 158,400	\$	212,256	\$	4,457,376	
4.2	(1) OPGW 48 Fiber	21	Mile	\$ 22,176	\$ 27,720	\$	49,896	\$	1,047,816	
4.3	(1) $3 / 8$ " HS Steel	21	Mile	\$ 3,696	\$ 26,400	\$	30,096	\$	632,016	

Item	Description	Quantity	Unit	Supply Rate		Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
TOTAL: CONDUCTOR, SHIELDWIRE, OPGW:										\$	6,137,208	
5. TRANSMISSION LINE INSULATOR, FITTINGS, HARDWARE												
5.1	Tangent - Polymer V-String	414	Set	\$	900	\$	720	\$	1,620	\$	670,680	
5.2	Deadend / Angle Assemblies	96.0	Set	S	1,500	\$	1,040	\$	2,540	\$	243,840	
5.3	OPGW Assembly - Tangent	138.0	Set	\$	200	\$	150	\$	350	\$	48,300	
5.4	OPGW Assembly - Angle / DE	34.0	Set	\$	250	\$	150	\$	400	\$	13,600	
5.5	OHSW Assembly - Tangent	138.0	Set	\$	200	\$	150	\$	350	\$	48,300	
5.5	OHSW Assembly - Angle / DE	34.0	Set	\$	250	\$	150	\$	400	\$	13,600	
5.8	OPGW Splice Boxes	9.0	Ea	\$	1,500	\$	1,000	\$	2,500	\$	22,500	
5.7	OPGW Splice \& Test	1.0	Sum			\$	10,800	\$	10,800	\$	10,800	
5.8	Spacer Dampers	2,310.0	Ea	\$	50	\$	35	\$	85	\$	196,350	
5.9	Vibration Dampers - Conductor	1,850.0	Ea	\$	32	\$	20	\$	52	\$	96,200	
5.10	Shieldwire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	10,000	\$	8,000	\$	18,000	\$	18,000	
TOTAL: TRANSMISSION LINE INSULA+52:63TORS, FITTINGS, HARDWARE:										\$	1,382,170	
6. NEW DYSINGER SWITCHYARD												
6.1	Site Works including sediment controls, access roads, rough grading, final	1.0	Sum				\$1,500,000.00	\$	1,500,000	\$	1,500,000	Supply \& Install
6.2	Substation Fence	2,500.0	LF				\$200.00	\$	200	\$	500,000	Supply \& Install
6.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
6.4	Switches 3ph	22.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	154,000	
6.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
6.6	Line Switches 3 ph w/ motor-operators	7.0	Ea	5	15,000		\$15,000	\$	30,000	\$	210,000	
6.7	Instrument Transformers	1.0	Sum			\$	1,214,000	\$	1,214,000	\$	1,214,000	
6.8	Breakers	11.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	4,180,000	
6.9	Arrestors (3 per line)	21.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	157,500	
6.10	Line Traps	7.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	147,000	
6.11	345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000	
6.12	Auxillary Power Generator - 500kW	1.0	Ea	\$	160,000	\$	40,000	\$	200,000	\$	200,000	
6.13	Low Profile Foundations	282.0	Ea			\$	5,000	\$	5,000	\$	1,410,000	Supply \& Install
6.14	Caisson DE Foundations	48.0	Ea			\$	50,000	\$	50,000	\$	2,400,000	Supply \& Install
6.15	Circuit Breaker Foundations	11.0	Ea			\$	75,000	\$	75,000	\$	825,000	Supply \& Install
6.16	Lightning Mast Foundations	5.0	Ea				\$15,000	\$	15,000	\$	75,000	Supply \& Install
6.17	SST Foundation	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
6.18	Control House and Pad (301×90)	1.0	Ea	\$	650,000	\$	200,000	\$	850,000	\$	850,000	
6.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
6.20	Control Cables	1.0	Sum	S	130,000	\$	130,000	\$	260,000	\$	260,000	
6.21	125VDC Batteries	2.0	Ea	5	50,000	\$	50,000	\$	100,000	\$	200,000	
6.22	Station Services	2.0	Ea			\$	25,000	\$	25,000	\$	50,000	
6.23	Protection, Telecom and Metering Equipment (Panels)	37.0	Ea			\$	30,000	\$	30,000	\$	1,110,000	Supply \& Install
6.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
6.26	Control Conduits from Cable Tray to Equipment	1.0	Sum			\$	357,500	\$	357,500	\$	357,500	Supply \& Install
6.27	Cable Trench Systems for Control Cables	1.0	Sum			\$	975,000	\$	975,000	\$	975,000	Supply \& Install
6.28	Grounding	1.0	Sum			\$	275,000	\$	275,000	\$	275,000	Supply \& Install
6.29	Bus Support 3 Ph	19.0	Ea	\$	4,500	\$	2,000	\$	6,500	\$	123,500	
6.30	Bus Support 1 Ph	36.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	108,000	
6.31	Switch Stands	24.0	Ea	S	8,000	\$	3,000	\$	11,000	\$	264,000	
6.32	Fuse Stand	1.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	11,000	
6.33	Misc. Structures	1.0	Sum			\$	74,000	\$	74,000	\$	74,000	
6.34	Substation A-Frame Structures Standalone	12.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	300,000	

Item	Description	Quantity	Unit		Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Remarks
SUF 4.6	Breakers 345kV	1.00	Ea	\$	300,000	\$	80,000	\$	380,000	\$	380,000	
SUF 4.7	Arrestors - 235kV	3.00	Ea	\$	6,500	\$	1,000	\$	7,500	\$	22,500	
SUF 4.8	Low Profile Foundations	19.00	Ea			\$	5,000	\$	5,000	\$	95,000	Supply \& Install
SUF 4.9	Circuit Breaker Foundations	1.00	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
SUF 4.10	Lightning Mast Foundations	2.00	Ea			\$	15,000	\$	15,000	\$	30,000	Supply \& Install
SUF 4.11	Reactor Foundation with concrete moat and double steel grating	1.00	Ea			\$	150,000	\$	150,000	\$	150,000	Supply \& Install
SUF 4.12	Control Cables	1.00	Sum	\$	100,000	\$	100,000	\$	200,000	\$	200,000	
SUF 4.13	Protection \& Telecom Equipment	3.00	Ea			\$	15,000	\$	15,000	\$	45,000	Supply \& Install
SUF 4.14	SCADA and Communications	1.00	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.15	Low Voltage AC Distribution	1.0	Sum			\$	300,000	\$	300,000	\$	300,000	Supply \& Install
SUF 4.16	Control Conduits	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.17	Cable Trench System for Control Conduits	1.0	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
SUF 4.18	Grounding	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.19	Bus Support 3ph	2.0	Ea	\$	3,000	\$	2,000	\$	5,000	\$	10,000	
SUF 4.20	Bus Support 1ph	3.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	9,000	
SUF 4.21	Switch Stands	1.0	Ea	\$	1,500	\$	800	\$	2,300	\$	2,300	
SUF 4.22	Fuse Stand	1.0	Ea	\$	1,500	\$	800	\$	2,300	\$	2,300	
SUF 4.23	CVT Stand	3.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	10,500	
SUF 4.24	Lightning Mast	2.0	Ea	\$	10,000	\$	5,000	\$	15,000	\$	30,000	
SUF 4.25	Misc Materials and Above / Below Ground Works	1.0	Ea			\$	1,500,000	\$	1,500,000	\$	1,500,000	Supply \& Install
SUF 4.26	Engineering, T\&C, PM, Indirects (15\%)							\$	-	\$	1,211,190	
SUF 5	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)									\$	3,750,000	Contingency for possible additional SUF upgrades
TOTAL-SUF										\$	19,705,790	

 approximately 22 miles of new 345kV Transmission Line, located in Erie County and Niagara County (Empire State Line). This estimate includes for the Developers Alternate Route which uses Steel Poles.

Item	Description	Quantity	Unit		Supply Rate		Labor \& ipment Rate		nit Rate:		TAL:	Remarks
5.3	OPGW Assembly - Tangent	150.0	Set	\$	200	\$	150	\$	350	\$	52,500	
5.5	OPGW Assembly - Angle / DE	72.0	Set	\$	250	\$	150	\$	400	\$	28,800	
5.6	OHSW Assembly - Angle / DE	15.0	Set	\$	250	\$	150	\$	400	\$	6,000	
5.8	OPGW Splice Boxes	10.0	Ea	\$	1,500	\$	1,000	\$	2,500	\$	25,000	
5.9	OPGW Splice \& Test	1.0	Sum			\$	12,000	\$	12,000	\$	12,000	
5.10	Spacer Dampers	2,835.0	Ea	\$	50	\$	35	\$	85	\$	240,975	
5.11	Vibration Dampers - Conductor	2,268.0	Ea	\$	32	\$	20	\$	52	\$	117,936	
5.12	Shield wire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	15,000	\$	8,000	\$	23,000	\$	23,000	
TOTAL:	RANSMISSION LINE INSULATORS, FITTINGS, HARDWARE:									\$	1,829,571	
6. NEW	YSINGER SUBSTATION											
6.1	Site Works including sediment controls, access roads, rough grading, final grading and	1.0	Sum				\$1,500,000.00	\$	1,500,000	\$	1,500,000	Supply \& Install
6.2	Substation Fence	2,500.0	LF				\$200.00	\$	200	\$	500,000	Supply \& Install
6.3	SSVT	1.0	Ea	\$	200,000	\$	50,000	\$	250,000	\$	250,000	
6.4	Switches 3ph	22.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	154,000	
6.5	Fuses 1ph	3.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	90,000	
6.6	Line Switches 3 ph w/ motor-operators	7.0	Ea	\$	15,000		\$15,000	\$	30,000	\$	210,000	
6.7	Instrument Transformers	1.0	Sum			\$	1,214,000	\$	1,214,000	\$	1,214,000	
6.8	Breakers	11.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	4,180,000	
6.9	Arrestors (3 per line)	21.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	157,500	
6.1	Line Traps	7.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	147,000	
6.11	345 kV buses	2.0	Ea	\$	25,000	\$	35,000	\$	60,000	\$	120,000	
6.12	Auxillary Power Generator - 500kW	1.0	Ea	S	160,000	\$	40,000	\$	200,000	\$	200,000	
6.13	Low Profile Foundations	282.0	Ea			\$	5,000	\$	5,000	\$	1,410,000	Supply \& Install
6.14	Caisson DE Foundations	48.0	Ea			\$	50,000	\$	50,000	\$	2,400,000	Supply \& Install
6.15	Circuit Breaker Foundations	11.0	Ea			\$	75,000	\$	75,000	\$	825,000	Supply \& Install
6.16	Lightning Mast Foundations	5.0	Ea				\$15,000	\$	15,000	\$	75,000	Supply \& Install
6.17	SST Foundation	1.0	Ea			\$	75,000	S	75,000	\$	75,000	Supply \& Install
6.18	Control House and Pad ($30^{\prime} \times 90$)	1.0	Ea	\$	650,000	\$	200,000	\$	850,000	\$	850,000	
6.19	Generator Foundation	1.0	Sum			\$	25,000	\$	25,000	\$	25,000	Supply \& Install
6.2	Control Cables	1.0	Sum	\$	130,000	\$	130,000	\$	260,000	\$	260,000	
6.21	125VDC Batteries	2.0	Ea	\$	50,000	\$	50,000	\$	100,000	\$	200,000	
6.22	Station Services	2.0	Ea			\$	25,000	\$	25,000	\$	50,000	
6.23	Protection, Telecom and Metering Equipment (Panels)	37.0	Ea			\$	30,000	\$	30,000	\$	1,110,000	Supply \& Install
6.24	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
6.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum			\$	500,000	\$	500,000	\$	500,000	Supply \& Install
6.26	Control Conduits from Cable Tray to Equipment	1.0	Sum			\$	357,500	\$	357,500	\$	357,500	Supply \& Install
6.27	Cable Trench Systems for Control Cables	1.0	Sum			\$	975,000	\$	975,000	\$	975,000	Supply \& Install
6.28	Grounding	1.0	Sum			\$	275,000	\$	275,000	\$	275,000	Supply \& Install
6.29	Bus Support 3 Ph	19.0	Ea	\$	4,500	\$	2,000	\$	6,500	\$	123,500	
6.3	Bus Support 1 Ph	36.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	108,000	
6.31	Switch Stands	24.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	264,000	
6.32	Fuse Stand	1.0	Ea	\$	8,000	\$	3,000	5	11,000	\$	11,000	
6.33	Misc. Structures	1.0	Sum			\$	74,000	\$	74,000	\$	74,000	
6.34	Substation A-Frame Structures Standalone	12.0	Ea	5	20,000	\$	5,000	\$	25,000	\$	300,000	
6.35	Lightning Masts	5.0	Ea	5	10,000	\$	2,000	\$	12,000	\$	60,000	
6.36	Arrestor Stands	21.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	73,500	
6.37	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum			\$	1,000,000	\$	1,000,000	\$	1,000,000	Supply \& Install
6.38	Connection of Existing Lines to Dysinger Switchyard	1.0	Sum			\$	5,000,000	\$	5,000,000	\$	5,000,000	Supply \& Install
TOTAL - DYSINGER SWITCHYARD:										\$	25,374,000	

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate:		TOTAL:	Remarks
7. EAST S	TOLLE RD SUBSTATION								
7.1	Site Works including sediment controls, access roads, rough grading, final grading and stone placement	1.0	Sum		\$ 1,000,000.00	1,000,000	\$	1,000,000	Supply \& Install
7.2	Substation Fence	1,900.0	LF		200.00	200	\$	380,000	Supply \& Install
7.3	SSVT	1.0	Ea	\$ 200,000	50,000	250,000	\$	250,000	
7.4	Switches 3ph	9.0	Ea	\$ 5,000	2,000	7,000	\$	63,000	
7.5	Fuses 1ph	3.0	Ea	\$ 15,000	\$ 15,000	30,000	\$	90,000	
7.6	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor-operators	3.0	Ea	\$ 15,000	\$ 15,000	30,000	\$	90,000	
7.7	Instrument Transformers	1.0	Sum		\$ 752,000	752,000	\$	752,000.00	
7.8	Breakers	4.0	Ea	300,000	80,000	380,000	\$	1,520,000.00	
7.9	Arrestors (3 per line) and shunt reactor	12.0	Ea	6,500	\$ 1,000	7,500	\$	90,000	
7.10	Line Traps	2.0	Ea	\$ 13,000	\$ 8,000	\$ 21,000	\$	42,000.00	
7.11	345 kV buses	1.0	Ea	\$ 25,000	\$ 35,000	\$ 60,000	\$	60,000	
7.12	Auxillary Power Generator - 500kW	1.0	Ea	\$ 160,000	40,000	200,000	\$	200,000	
7.13	Low Profile Foundations	147.0	Ea		\$ 5,000	5,000	\$	735,000	Supply \& Install
7.14	Caisson DE Foundations	20.0	Ea		\$ 50,000	50,000	\$	1,000,000	Supply \& Install
7.15	Circuit Breaker Foundations	4.0	Ea		\$ 75,000	75,000	\$	300,000	Supply \& Install
7.16	Lightning Mast Foundations	5.0	Ea		\$ 15,000	\$ 15,000	\$	75,000	Supply \& Install
7.17	SST Foundation	1.0	Ea		\$ 75,000.00	\$ 75,000	\$	75,000	Supply \& Install
7.18	Control House and Pad (25' $\times 50$ ' -1250 sq. ft)	1.0	Ea	350,000	\$ 100,000	\$ 450,000	\$	450,000	
7.19	Generator Foundation	1.0	Sum		\$ 25,000	\$ 25,000	\$	25,000	Supply \& Install
7.20	Control Cables	1.0	Sum	130,000	\$ 130,000	\$ 260,000	\$	260,000.00	
7.21	125VDC Batteries	2.0	Ea	\$ 50,000	\$ 50,000	100,000	\$	200,000	
7.22	Station Services	2.0	Ea		\$ 25,000	\$ 25,000	\$	50,000	
7.23	Protection, Telecom and Metering Equipment (Panels)	18.0	Ea		\$ 30,000	\$ 30,000	\$	540,000	Supply \& Install
7.24	SCADA and Communications	1.0	Sum		\$	250,000	\$	250,000	Supply \& Install
7.25	Low Voltage AC Distribution \& DC Panels \& Switches	1.0	Sum		\$ 500,000	500,000	\$	500,000	Supply \& Install
7.26	Control Conduits from Cable Tray to Equipment	1.0	Sum		\$ 357,500	357,500	\$	357,500	Supply \& Install
7.27	Cable Trench Systems for Control Cables	1.0	Sum		\$ 975,000	\$ 975,000	\$	975,000	Supply \& Install
7.28	Grounding	1.0	Sum		\$ 125,000	125,000	\$	125,000	Supply \& Install
7.29	Bus Support 3 Ph	9.0	Ea	\$ 4,500	\$ 2,000	\$ 6,500	\$	58,500	
7.30	Bus Support 1 Ph	21.0	Ea	\$ 2,000	\$ 11,000	\$ 3,000	\$	63,000	
7.31	Switch Stands	13.0	Ea	\$ 8,000	\$ 3,000	\$ 11,000	\$	143,000	
7.32	Fuse Stand	1.0	Ea	\$ 8,000	\$ 3,000	11,000	\$	11,000	
7.33	Misc. Structures	1.0	Sum		\$ 24,000	24,000	\$	24,000.00	
7.34	Substation A-Frame Structures Standalone	5.0	Ea	\$ 20,000	\$ 5,000	\$ 25,000	\$	125,000	
7.35	Lightning Masts	5.0	Ea	\$ 10,000	\$ 2,000	\$ 12,000	\$	60,000	
7.36	Arrestor Stands	12.0	Ea	2,500	\$ 1,000	\$ 3,500	\$	42,000	
7.37	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		\$ 1,000,000	1,000,000	\$	1,000,000	Supply \& Install
7.38	345kV 30MVAR Shunt Reactor	1.0	Ea	\$ 732,000	\$ 100,000	832,000	\$	832,000	
7.39	Transformer Foundation with concrete moat and double steel grating	1.0	Sum		\$ 150,000	150,000	\$	150,000	Supply \& Install
7.40	Interconnection arrangement at Stolle Rd Substation	1.0	Sum		\$ 1,000,000	1,000,000	\$	1,000,000	Supply \& Install
TOTAL - EAST STOLLE RD SUBSTATION:							\$	13,963,000	
8.1	Contractor Mobilization / Demobilization								
	Mob / Demob	1.00	Sum		\$ 1,000,000	1,000,000	\$	1,000,000	
	Project Management, Material Handling \& Amenities								
8.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision, Scheduler and	14.00	Months		\$ 350,000	\$ 350,000	\$	4,900,000	
8.3	Site Accommodation, Facilities, Storage	1.00	Sum		\$ 1,400,000	1,400,000	\$	1,400,000	

Item	Description	Quantity	Unit		Supply Rate		 ent Rate		nit Rate:		TOTAL:	Remarks
SUF 4.11	Reactor Foundation with concrete moat and double steel grating	1.00	Ea			\$	150,000	\$	150,000	\$	150,000	Supply \& Install
SUF 4.12	Control Cables	1.00	Sum	\$	100,000	\$	100,000	\$	200,000	\$	200,000	
SUF 4.13	Protection \& Telecom Equipment	3.00	Ea			\$	15,000	\$	15,000	\$	45,000	Supply \& Install
SUF 4.14	SCADA and Communications	1.00	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.15	Low Voltage AC Distribution	1.0	Sum			\$	300,000	\$	300,000	\$	300,000	Supply \& Install
SUF 4.16	Control Conduits	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.17	Cable Trench System for Control Conduits	1.0	Sum			\$	750,000	\$	750,000	\$	750,000	Supply \& Install
SUF 4.18	Grounding	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
SUF 4.19	Bus Support 3ph	2.0	Ea	\$	3,000	\$	2,000	\$	5,000	\$	10,000	
SUF 4.20	Bus Support 1ph	3.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	9,000	
SUF 4.21	Switch Stands	1.0	Ea	\$	1,500	\$	800	\$	2,300	\$	2,300	
SUF 4.22	Fuse Stand	1.0	Ea	\$	1,500	\$	800	\$	2,300	\$	2,300	
SUF 4.23	CVT Stand	3.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	10,500	
SUF 4.24	Lightning Mast	2.0	Ea	\$	10,000	\$	5,000	\$	15,000	\$	30,000	
SUF 4.25	Misc Materials and Above / Below Ground Works	1.0	Ea			\$	1,500,000	\$	1,500,000	\$	1,500,000	Supply \& Install
SUF 4.26	Engineering, T\&C, PM, Indirects (15\%)							\$	-	\$	1,211,190	
SUF 5	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)									\$	3,750,000	Contingency for possible additional SUF upgrades
TOTAL -SUF										\$	19,705,790	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T015			
FEDERAL						Preferred Route		Alternative Route	
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan	\$26,600	\$88,250	\$26,600	\$88,250
National Park Service	National Parks	Consultation; Special Use Permit	Only applies if National Park located in project area.	Depending on impact of project request for a special use permit may require a NEPA environmental assessment.					
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$27,800	\$94,000	\$30,300	\$99,000
NEPA	National Environmental Policy Act	Categorical Exclusion; EA Finding of No Impact; or EIS Record of Decision	With some exemptions, projects on federally owned lands and/or projects requiring federal permit approvals	Possible NEPA review due if federal agency coordination is required. Federal agency involved to determine if Categorical Exclusion applies. Assumes Article 7 covers NEPA requirements or if an EIS is required it is prepared under SEQRA Task.					
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)				
STATE									
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans				
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Article VII Intervenor Fund payment expected to be $\$ 100,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans	\$600,000	\$3,100,000	\$600,000	\$3,100,000

NYS Public Service Commission / Department of Public Service (NYSDPS)	Part 102		Construction of a utility overhead transmission facility that will convey electric energy at 65 kV or higher for a distance of one mile or longer and are not subject to Article VII of the Public Service Law.	May include coordination or studies completed under other line items including: Visual assessment, SHPO determination, OPRHP consultation, Ecological Impacts Assessment	Advantage-Disadvantage Analysis				
NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan				
						\$12,000	\$53,000	\$12,000	\$53,000
NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additiona coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)				
						\$11,200	\$38,000	\$11,200	\$38,000
Any State or local government agency that issues permits or approvals	State Environmental Quality Review Act (SEQRA)	Environmental Assessment (EA) Determination of Significance	Projects not covered as a Type II Action (Note a project can not be segmented - all phases/tasks must be considered in the review)	Most projects or activities proposed by a state agency, and all discretionary approvals (permits) from a NYS agency or local government, require an environmental impact assessment. SEQR requires the sponsoring or approving governmental body to identify and mitigate the significant environmental impacts of the activity it is proposing or permitting.					
NYSDOS	State Coastal Management Program Mapped Coastal Area Boundary	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coastal Zone; and consistency with Local Waterfront Revitalization Plans (LWRPs); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)					
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies	\$13200	\$49,000	\$14200	\$52000
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400	\$1,200	\$6,400

NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$69,000	\$17,000	\$69,000
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee = \$25 plus $\$ 2,000,000$ additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)				
NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2-yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000	\$11,000	\$24,000
REGIONAL									
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$76,000	\$11,000	\$76,000
LOCALIMUNICIPAL									
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans				
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000	\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000	\$6,000	\$35,000
Town, City or Village	Variable	Building Permits	New Structures	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$18,000	\$92,000	\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways			\$6,000	\$35,000	\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000	\$6,000	\$52,000
						Minimum	Maximum	Minimum	Maximum
			ENVIRONMENTAL LICENSING \& PER	MITTING COST (EXCLUDING MITIGATION)	PROJECT T014 TOTAL	\$773,000	\$3,851,650	\$776,500	\$3,859,650
Excluded cost: Mitigation or restoration for impact to regulated wetlands; agricultural land and tree clearing					Expected Value	\$2,312,325		\$3,477,112.50	

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T015-NextEra Energy

SUBSTATION ENGINEERING
COMPAN Y

ENVIRONMENTAL MITIGATION ESTIMATE

WNY TRANSMISSION PROJECT - ENVIRONMENTAL MITIGATION COST ESTIMATE FOR T014

	Offsite Wetland Mitigation*			Farmland** $^{c \mid}$		Alternative Rotue		Preferred \& Alternative Routes	
	Preferred Route		Min.	Max.	Min.	Max.			
	Min.	Max.	45 acres	38 acres	38 acres	30 acres			
Area	45 acres	$\$ 60$ acres							
Cost/Acre	$\$ 60,000$	$\$ 120,000$	$\$ 60,000$	$\$ 120,000$	$\$ 503$	$\$ 503$			
Ratio	$1: 1$	$3: 1$	$1: 1$	$3: 1$	$1: 1$	$1: 1$			
Total	$\$ 2,700,000$	$\$ 16,200,000$	$\$ 2,280,000$	$\$ 13,680,000$	$\$ 15,090$	$\$ 30,180$			

TO14 PREFERRED ROUTE MITIGATION TOTAL	Minimum	Maximum	Expected Value
	$\mathbf{\$ 2 , 7 1 5 , 0 9 0}$	$\mathbf{\$ 1 6 , 2 3 0 , 1 8 0}$	$\mathbf{\$}$
$\mathbf{9}, \mathbf{4 7 2 , 6 3 5}$			

to14 Alternative route MITIGATION TOTAL	Minimum	Maximum	Expected Value
	$\mathbf{\$ 2 , 2 9 5 , 0 9 0}$	$\mathbf{\$ 1 3 , 7 1 0 , 1 8 0}$	$\mathbf{\$}$

*Offsite wetland mitigation area assumes clearing of NWI Forested/Shrub Wetland approx. 3.24 miles (17107 LF) by 115' ROW width for the Preferred Route and approx. 3.47 (18322 LF) by 90' ROW width for the Alternative Route; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in non-forested wetlands; costing includes design and installation costs only; does not include land acquisition or long term monitoring
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 9.8 miles (51744 LF) Land Adjacent to Agriculture District/Crop Land by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Client: NYISO
Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T015 - NextEra Energy

COUNTY:
DEVELOPER:
SEGMENT:

		Area (Acres)	Total Cost	
	Total	0.68	$\$$	$4,376.00$

Client: NYISO
Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T015 - NextEra Energy

REAL ESTATE ESTIMATE
 (INCUMBENT UTILITY ROW

COUNTY:
DEVELOPER:
SEGMENT:

NIAGARA \& ERIE NEXTERA (T014 \& T015 PREFERRED)
DYSINGER - STOLLE SEGMENT

	DEVELOPER	SEGMENT	COUNTY	INCUMBENT UTILITY (ROW) (ACRES)	TOTAL ROW COST
1	NEXTERA ENERGY	Dysinger SS to Stolle Rd SS - 19.93 miles	Niagara	4.59	1,793,000
			Erie	355.48	

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T015 - NextEra Energy

REAL ESTATE ESTIMATE

COUNTY: DEVELOPER: SEGMENT:		NIAGARA \& ERIE NEXTERA (TO14 \& T015 ALTERNATIVE) DYSINGER TO STOLLE ROAD SEGMENT		
	Address	Area (Acres)		I Cost
A NIAGARA COUNTY				
Sub Total (A)		5.30	\$	124,550.00
B ERIE COUNTY				
Sub Total (B)		191.75	\$	5,572,547.00
Total (C +		197.05	\$	5,697,097.00

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T015 - NextEra Energy

REAL ESTATE ESTIMATE

(NEW ROW - 10FT. ADDITIONAL CORRIDOR)

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T015 - NextEra Energy

COUNTY:
DEVELOPER:
SEGMENT:

NIAGARA \& ERIE
NEXTERA (T014 \& T015 ALTERNATIVE)
DYSINGER - STOLLE SEGMENT

	DEVELOPER	SEGMENT	COUNTY	INCUMBENT UTILITY (ROW)	TOTAL ROW COST
				(ACRES)	
1	NEXTERA ENERGY (Alternative)	Dysinger SS to Stolle Rd SS - 21.66 miles	Niagara	1.20	90,000
			Erie	17.16	

Project: Western Transmission Project Evaluation

Subject: Cost Estimate
Document No: T014-NextEra Energy
REAL ESTATE ESTIMATE

COUNTY:	ERIE
DEVELOPER:	NEXTERA (T014 \& T015 ALTERNATIVE)
SEGMENT:	DYSINGER - STOLLE SEGMENT
Address	Total Valuation of Property with 3\% Escalation/year (as of 2017)
Total Valuation Cost	\$ 1,037,124.17

Client: NYISO
Project: Western Transmission Project Evaluation
SEED
Subject: Cost Estimate
Document No: T015 - NextEra Energy

REAL ESTATE ESTIMATE

COUNTY:	NIAGARA
DEVELOPER:	NEXTERA
SEGMENT:	DYSINGER SUBSTATION
Address	Total Cost
Total Cost of Proposed Substation Site	\$ 251,450.00

Client: NYISO
Project: Western Transmission Project Evaluation
SECU
Subject: Cost Estimate
Document No: T015 - NextEra Energy

COUNTY:	ERIE	
DEVELOPER:	NEXTERA	
SEGMENT:	STOLLE ROAD SUBSTATION	
	Address	
		Total Cost
	Total Cost of Proposed Substation Site	$\$$

ASSUMPTIONS AND CLARIFICATIONS

a) Cost Estimate is based on 2017 rates.
b) Construction Schedule is in accordance with the Developers proposed schedule (6 months for construction - seems light) - we have assumed continuous
working with no breaks in the schedule. Six months added for start up and close out works and assisting in pre-construction activities (i.e. permitting
activates, material procurement etc.)
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6 x 10 hour days).
e) Wood Pole types are based on Plan and Profile drawings. Direct embed foundations are assumed to be 10% plus 2 ft and rates include backfill. Steel Pole
weights and foundation types are estimated based on benchmark data.
f) We have assumed that the Access Road upgrades include gravel updates only.
g) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies.
h) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes. i) The equipment types listed for Dysinger and East Stolle Rd Substation have been taken from a recently completed 345kV substation project, using current pricing. j) Estimated quantities have been used for items in red text in Section 1 of the Estimate (CLEARING \& ACCESS FOR T-LINE CONSTRUCTION). These items were not quantified in the Developers Estimate, however we believe that they are necessary for the works. k) A Contractor Mark-Up (OH\&P) of 15\% has been included in the Total section I) Assumes all environmental data and project details provided are accurate unless noted otherwise. m) USFWS T\&E assumes $1 / 4$ of the total Preferred Route will require field survey for T\&E (5 miles). n)USFWS T\&E assumes $1 / 4$ of the total Alternative Route will require field survey for T\&E (5. 5 miles). o) NEPA-Assumes no NEPA because Art VII. p) SHPO-Assumes consultation and Phase 1A/1B archeological studies with field survey for 50% of Preferred Route (10 miles) and Alternative Route (11 miles). q) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII. r) Assumes no coordination with National Parks Service or OPRHP/State Parks. s) USACE wetland delineation total for Preferred and Alternative Routes is based on combined NYSDEC/USACE wetland length of 3.9 miles from information in Proposal Attachment C. t) NYSDEC delineations overlap and are accounted for in USACE costing.

ASSUMPTIONS AND CLARIFICATIONS

Revision: 5
u) Offsite wetland mitigation area costs for the Preferred Route based on impacts anticipated by clearing of NWI Forested/Shrub Wetland of approximately 3.24 miles (calculated by GEI based on NWI mapper legend categories). Assumes clearing an additional 115 feet within Right of Way. Minimum costs $\$ 60,000 /$ acre at $1: 1$ ratio, maximum costs at $\$ 120,000 /$ acre at $3: 1$ ratio for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring.
v) Offsite wetland mitigation area costs for the Alternative Route based on impacts anticipated by clearing of NWI Forested/Shrub Wetland of approximately 3.47 calculated by GEI based on NWI mapper legend categories). Assumes clearing 90 wide feet within Right of Way. Minimum costs at $\$ 60,000 /$ acre at $1: 1$ ratio, maximum costs at $\$ 120,000 /$ acre at $3: 1$ ratio for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring.
w) Agricultural mitigation for Preferred and Alternative Routes assumes timber matting impacts and pad impacts on adjacent agriculture land (9.8 miles) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25 -foot-wide impact, Maximum assumes 50 -foot-wide impact.
x) Assumes Right of Way restoration is accounted for in construction costs.
y) Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.).
z) No tree survey or replanting required outside regulated wetlands areas.
aa) Article VII Intervenor Fund payment expected to be $\$ 100,000$.
ab) Expected value of Alt. Route is estimated to be 50% higher than the mean of the range of environmental licensing and permitting costs due to new ROW.
ac) SUF pricing is included at the end of the estimate workbook (costs excluded from main estimate).
ad) SUF pricing includes 35% to cover Contractor markup (15\%) and contingency (20\%)
ae) Reconductor pricing (SUF 2 - Shaw to Swan Reconductor) is based on Niagara-Packard (National Grid) reconductor estimate, pro-rated to a rate / mile. Note that this is based on conductor, shieldwire and hardware pricing only and does not include structure or foundation works.
af) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

INDEPENDENT ESTIMATES

 ATTACHMENT B10T017-EXELON TRANSMISSION

Item	Description	Quantity	Unit		Supply Rate		 t Rate		Rate:		AL:	Comments:
5.2	Dead End / Angle - Insulator Sets	450.0	Set	\$	1,300	\$	1,040	\$	2,340	\$	1,053,000	
5.3	Post Insulators	75.0	Set	\$	1,500	\$	1,350	\$	2,850	\$	213,750	
5.4	OHSW Assembly - Angle / DE ($2 \times$ shieldwires 345 kV , $1 \times 230 \mathrm{kV}$ single EHS)	248.0	Set	\$	500	\$	400	\$	900	\$	223,200	
5.5	OHSW Assembly - Tangent ($2 \times$ shieldwires 345 kV , $1 \times 230 \mathrm{kV}$ single EHS)	684.0	Set	\$	250	\$	150	\$	400	\$	273,600	
5.6	Spacer Dampers	6,795.0	Ea	\$	50	\$	35	\$	85	\$	577,575	
5.7	Vibration Dampers - Conductor	5,436.0	Ea	\$	32	\$	20	\$	52	\$	282,672	
5.8	Shieldwire / OPGW Dampers, Misc Fittings	1.0	Sum	\$	30,000	\$	12,000	\$	42,000	\$	42,000	
TOTAL: T	RANSMISSION LINE INSULATORS, FITTINGS, HARDWARE:									\$	4,498,017	
6. STOLL	ROAD SUBSTATION WORKS:											
	345kV Works											
6.1	Low Profile Foundations	22.0	Ea			\$	5,000	\$	5,000	\$	110,000	Supply \& Install
6.2	Circuit Breaker Foundation	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
6.3	Below Grade Conduit \& Grounding	1.0	Sum			\$	300,000	\$	300,000	\$	300,000	Supply \& Install
6.4	Bus Support 1ph	12.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	36,000	
6.5	Switch Stands	2.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	22,000	
6.6	Misc. Structures	1.0	Sum			\$	27,000	\$	27,000	\$	27,000	
6.7	LA Stands	3.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	10,500	
6.8	Instrument Transformers - 345kV	1.0	Sum			\$	146,000	\$	146,000	\$	146,000	
6.9	Motor Operated Disconnect Switches	2.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	60,000	
6.10	Circuit Breaker 345kV	1.0	Ea	\$	300,000	\$	80,000	\$	380,000	\$	380,000	
6.11	Arrestors (3 per line)	3.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	22,500	
6.12	Line Traps	1.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	21,000	
6.13	Control Cables	1.0	Sum			\$	50,000	\$	50,000	\$	50,000	Supply \& Install
6.14	Protection, Telecom and Metering Equipment	1.0	Sum			\$	90,000	\$	90,000	\$	90,000	Supply \& Install
	230kV Works											
6.15	Demo 3ph VT Structure and Foundation	1.0	Sum			\$	15,000	\$	15,000	\$	15,000	Supply \& Install
6.16	Low Profile Foundations	21.0	Ea			\$	5,000	\$	5,000	\$	105,000	Supply \& Install
6.17	Caisson Dead End Foundation	4.0	Ea			\$	50,000	\$	50,000	\$	200,000	Supply \& Install
6.18	Circuit Breaker Foundation	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
6.19	Lightning Mast Foundation	1.0	Ea			\$	15,000	\$	15,000	\$	15,000	Supply \& Install
6.20	Below Grade Conduit \& Grounding	1.0	Sum			\$	300,000	\$	300,000	\$	300,000	Supply \& Install
6.21	Bus Support 3ph	1.0	Ea	\$	4,500	\$	2,000	\$	6,500	\$	6,500	
6.22	Switch Stands	2.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	22,000	
6.23	Misc. Structures - 230kV	1.0	Sum			\$	33,000	\$	33,000	\$	33,000	
6.24	A-frame Dead End	1.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	25,000	
6.25	LA Stands	3.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	10,500	
6.26	Lightning Mast	1.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	12,000	
6.27	Circuit breaker-230kV	1.0	Ea	\$	250,000	\$	75,000	\$	325,000	\$	325,000	
6.28	Instrument Transformers - 230kV	1.0	Sum			\$	146,000	\$	146,000	\$	146,000	
6.29	Switches - 230kV	1.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	30,000	
6.30	Arrestors (3 per line)	3.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	22,500	
6.31	Line Traps	1.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	21,000	
6.32	VT's 230kV Relocated	3.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	63,000	
6.33	Control Cables	1.0	Sum			\$	50,000	\$	50,000	\$	50,000	Supply \& Install
6.34	Protection, Telecom and Metering Equipment	1.0	Sum			\$	90,000	S	90,000	\$	90,000	Supply \& Install
6.35	Misc Above / Below Ground Works (345kV and 230kV)	1.0	Sum			\$	700,000	\$	700,000	\$	700,000	Supply \& Install
TOTAL - STOLLE RD SUBSTATION WORKS:										\$	3,616,500	

Item	Description	Quantity	Unit		Supply Rate	Labor \& Equipment Rate		Total Unit Rate:		TOTAL:		Comments:
7. GARDENVILLE 230kV SUBSTATION WORKS												
7.1	Site Works including sediment controls, access roads, rough grading, final grading	0.3	Sum				\$1,000,000.00	\$	1,000,000	\$	300,000	Supply \& Install
7.2	Substation Fence	200.0	LF				\$200	\$	200	\$	40,000	Supply \& Install
7.3	New microwave antenna pole foundation - caisson type	1.0	Sum				\$75,000	\$	75,000	\$	75,000	Supply \& Install
7.4	Relocate microwave antenna steel pole and ancillary equipment	1.0	Sum				\$50,000	\$	50,000	\$	50,000	Supply \& Install
7.5	Demo microwave antenna pole foundation	1.0	Sum				\$20,000	\$	20,000	\$	20,000	Supply \& Install
7.6	Switches 3ph	2.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	14,000	
7.7	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor operators	1.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	30,000	
7.8	Instrument Transformers	1.0	Sum			\$	260,000	\$	260,000	\$	260,000	
7.9	Breakers	1.0	Ea	\$	250,000	\$	75,000	\$	325,000	\$	325,000	
7.10	Arrestors (3 per line)	3.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	22,500	
7.11	Line Traps	1.00	Ea	\$	13,000	\$	8,000	\$	21,000	\$	21,000	
7.12	Low Profile Foundations	31.0	Ea			\$	5,000	\$	5,000	\$	155,000	Supply \& Install
7.13	Caisson DE Foundations	4.0	Ea			\$	50,000	\$	50,000	\$	200,000	Supply \& Install
7.14	Circuit Breaker Foundations	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
7.15	Lightning Mast Foundations	1.0	Ea			\$	15,000	\$	15,000	\$	15,000	Supply \& Install
7.16	Control Cables	1.0	Sum	\$	50,000	\$	50,000	\$	100,000	\$	100,000	
7.17	Protection, Telecom and Metering Equipment	1.0	Ea			\$	140,000	\$	140,000	\$	140,000	Supply \& Install
7.18	SCADA and Communications	1.0	Sum			\$	50,000	\$	50,000	\$	50,000	Supply \& Install
7.19	Control Conduits from Cable Trench to Equipment	1.0	Sum			\$	100,000	\$	100,000	\$	100,000	Supply \& Install
7.20	Grounding	1.0	Sum			\$	100,000	\$	100,000	\$	100,000	Supply \& Install
7.21	Bus Support 3 Ph	3.0	Ea	\$	4,500	\$	2,000	\$	6,500	\$	19,500	
7.22	Bus Support 1 Ph	3.0	Ea	\$	2,000	\$	1,000	\$	3,000	\$	9,000	
7.23	Switch Stands	3.0	Ea	\$	8,000	\$	3,000	\$	11,000	\$	33,000	
7.24	Misc. Structures	1.0	Sum			\$	13,000	\$	13,000	\$	13,000	
7.25	Substation A-Frame Structures Standalone	1.0	Ea	\$	20,000	\$	5,000	\$	25,000	\$	25,000	
7.26	Lightning Masts	1.0	Ea	\$	10,000	\$	2,000	\$	12,000	\$	12,000	
7.27	Arrestor Stands	3.0	Ea	\$	2,500	\$	1,000	\$	3,500	\$	10,500	
7.28	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum			\$	1,200,000	\$	1,200,000	\$	1,200,000	Supply \& Install
TOTAL - GARDENVILLE SUBSTATION WORKS:										\$	3,414,500	
8. NIAGARA SUBSTATION WORK												
8.1	Site Works including sediment controls, access roads, rough grading, final grading	0.6	Sum			\$	1,000,000	\$	1,000,000	\$	600,000	Supply \& Install
8.2	Substation Fence	320.0	LF			\$	200	\$	200	\$	64,000	Supply \& Install
8.3	Switches 3ph	2.0	Ea	\$	5,000	\$	2,000	\$	7,000	\$	14,000	
8.4	Line Switches $3 \mathrm{ph} \mathrm{w} /$ motor operators	1.0	Ea	\$	15,000	\$	15,000	\$	30,000	\$	30,000	
8.5	Instrument Transformers	1.0	Sum			\$	121,000	\$	121,000	\$	121,000	
8.6	Breakers	1.0	Ea	\$	250,000	\$	75,000	\$	325,000	\$	325,000	
8.7	Arrestors (3 per line)	6.0	Ea	\$	6,500	\$	1,000	\$	7,500	\$	45,000	
8.8	Line Traps	1.0	Ea	\$	13,000	\$	8,000	\$	21,000	\$	21,000	
8.9	345 kV buses	0.5	Ea	\$	25,000	\$	35,000	\$	60,000	\$	30,000	
8.10	Low Profile Foundations	37.0	Ea			\$	5,000	\$	5,000	\$	185,000	Supply \& Install
8.11	Caisson DE Foundations	4.0	Ea			\$	50,000		50,000	\$	200,000	Supply \& Install
8.12	Circuit Breaker Foundations	1.0	Ea			\$	75,000	\$	75,000	\$	75,000	Supply \& Install
8.13	Control Cables	1.0	Sum	\$	50,000	\$	50,000	\$	100,000	\$	100,000	
8.14	Protection, Telecom and Metering Equipment	1.0	Sum			\$	90,000	\$	90,000	\$	90,000	Supply \& Install
8.15	SCADA and Communications	1.0	Sum			\$	250,000	\$	250,000	\$	250,000	Supply \& Install
8.16	Control Conduits from Cable Trench to Equipment	1.0	Sum			\$	75,000	\$	75,000	\$	75,000	Supply \& Install

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate:		TOTAL:		Comments:
8.17	Cable Trench Systems for Control Cables	1.0	Sum		350,000	\$	350,000	\$	350,000	Supply \& Install
8.18	Grounding	1.0	Sum		125,000	\$	125,000	\$	125,000	Supply \& Install
8.19	Underground Riser Structures	6.0	Ea	\$ 2,500	1,000	\$	3,500	\$	21,000	
8.20	Bus Support 1 Ph	6.0	Ea	\$	1,000	\$	3,000	\$	18,000	
8.21	Switch Stands	2.0	Ea	8,000	3,000	\$	11,000	\$	22,000	
8.22	Misc. Structures	1.0	Ea	\$ 1,000	1,000	\$	2,000	\$	2,000	
8.23	Substation A-Frame Structures Standalone	1.0	Ea	20,000	5,000	\$	25,000	\$	25,000	
8.24	Arrestor Stands	6.0	Ea	\$2,500	1,000	\$	3,500	\$	21,000	
8.25	Miscellaneous Materials and Above / Below Ground Works	1.0	Sum		200,000	\$	200,000	\$	200,000	Supply \& Install
8.26	345 kV underground cable with terminations. (680 Circuit Ft .)	1.0	Ea		1,200,000	\$	1,200,000	\$	1,200,000	Supply \& Install
9. MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:								\$	4,209,000	
9.1	Contractor Mobilization / Demobilization									
	Mob / Demob	1.0	Sum		\$ 1,500,000	\$	1,500,000	\$	1,500,000	
	Project Management, Material Handling \& Amenities					\$	1,500,	\$	-	
9.2	Project Management \& Staffing (includes PM, Field Engineers / Supervision,	32.0	Months		350,000	\$	350,000	\$	11,200,000	
9.3	Site Accommodation, Facilities, Storage	1.0	Sum		2,000,000	\$	2,000,000	\$	2,000,000	
	Engineering					\$	-	\$	-	
9.4	Design Engineering	1.0	Sum		7,200,000	\$	7,200,000	\$	7,200,000	
9.5	Lidar	1.0	Sum		800,000	\$	800,000	\$	800,000	
9.6	Geotech	1.0	Sum		1,700,000	\$	1,700,000	\$	1,700,000	
9.7	Surveying/Staking	1.0	Sum		1,000,000	\$	1,000,000	\$	1,000,000	
	Testing \& Commissioning									
9.8	Testing \& Commissioning of TRANSMISSION LINE and Equipment	1.0	Sum		\$ 1,800,000	\$	1,800,000	\$	1,800,000	
	Permitting and Additional Costs					\$	-	\$	-	
9.9	Environmental Licensing \& Permitting Costs	1.0	Sum		\$ 2,859,705	\$	2,859,705	\$	2,859,705	
9.10	Environmental Mitigation	1.0	Sum		\$ 18,601,683	\$	18,601,683	\$	18,601,683	
9.11	Warranties / LOC's	1.0	Sum		786,713	\$	786,713	\$	786,713	
9.12	Real Estate Costs (New)	1.0	Sum		\$7,017,412	\$	7,017,412	\$	7,017,412	
9.13	Real Estate Costs (Incumbent Utility ROW)	1.0	Sum		\$2,774,000	\$	2,774,000	\$	2,774,000	
9.14	Legal Fees	1.0	Sum		3,500,000	\$	3,500,000	\$	3,500,000	
9.15	Sales Tax on Materials	1.0	Sum	\$ 3,864,884		\$	3,864,884	\$	3,864,884	
9.16	Fees for permits, including roadway, railroad, building or other local permits	1.0	Sum		\$ 200,000	\$	200,000	\$	200,000	
TOTAL - MOB/DEMOB, ENGINEERING, PERMITTING, T\&C, PM \& INDIRECTS:								\$	66,804,397	
10. SYSTEM UPGRADE FACILITIES										
SUF 1.1	Niagara Falls Blvd to Packard 115kV Line 130 Reconductor	3.67	Mile		\$ 400,000	\$	400,000	\$	1,468,000	Rate for reconductor is pro-rated from National Grid Niagara - Packard reconductor. Note that rate does not include upgrades to structures or foundations.
SUF 1.2	Engineering, T\&C, PM, Indirects FOR suf 1.1 (15\%)					\$	-	\$	220,200	
SUF 2.1	Reconductor National Grid 115kV Line 133	9.78	Mile		\$ 400,000	\$	400,000	\$	3,912,000	Rate for reconductor is pro-rated from National Grid Niagara - Packard reconductor.
SUF 2.2	Engineering, T\&C, PM, Indirects FOR SUF 2.2 (15\%)					\$	-	\$	586,800	Note that rate does not include upgrades to structures or foundations.

Item	Description	Quantity	Unit	Supply Rate	Labor \& Equipment Rate	Total Unit Rate:		TOTAL:	Comments:
SUF 3.1	Depew to Erie Street 115kV Transmission Line 921. Terminal Allowance included. See comments.	1.00	Ea		500,000	500,000	\$	500,000	Relay was replaced and line ratings increased to 124/137/158 (NOR/LTE/STE) resulting ratings are below line conductor ratings. Scope is to remove all limitations on the circuit so is it limited by the line conductor ratings, 125/152/181 (NOR/LTE/STE). The
SUF 3.2	Engineering, T\&C, PM, Indirects FOR SUF 3.1(15\%)					\$ -	\$	75,000	limiting equipment is not known - scope undefined. Assumed 15% to cover all misc costs
SUF 4.1	Packard to Huntley Reconductor	19.62	Mile		\$ 400,000	400,000	\$	7,848,000	
SUF 4.2	Engineering, T\&C, PM, Indirects for SUF 4.1 (15\%)					\$ -	\$	1,177,200	
SUF 5	SYSTEM UPGRADE FACILITIES CONTINGENCY (SEE ASSUMPTIONS \& CLARIFICATIONS)						\$	7,500,000	Contingency for possible additional SUF upgrades
TOTAL SYSTEM UPGRADE FACILITIES:							\$	23,287,200	

PROJECT TITLE WNY PROJECT EVALUATION- ENVIRONMENTAL LICENSING \& PERMITTING COST ELEMENTS						ENVIRONMENTAL LICENSING \& PERMITTING COST ESTIMATE RANGE FOR PROPOSED WNY TRANSMISSION PROJECT - T017	
FEDERAL							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans	Min.	Max.
USACE	Waters of the US under Section 404 of the Clean Water Act and Section 10 of the 1899 Rivers and Harbors Act (including regulated wetland areas)	Nationwide Permits (NWP) or Individual Permit (IP)	Any work within the boundaries of regulated wetlands (with the exception of isolated wetlands) or waterways to the spring high tide or ordinary high water mark	If project qualifies for a NWP (<0.5 acre disturbance and within NWP project type parameters), a pre-construction notification (PCN) is typically required. NWPs have a 45 day review period starting from when project logged in system (up to 6 wk backlog delay in logging projects) If an IP is triggered, USACE will require Alternative Analysis and Public Notice/Hearing. IPs could also trigger restrictive environmental work windows. IPs have a 120 day review period starting from when permit is "deemed complete"	Wetland Delineation; Wetland Function \& Value Assessment; Stream Delineation; Restoration Plan		
						\$46,760	\$126,050
USFWS	Endangered Species Act Section 7 (ESA) Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act	Consultation (Formal or Informal); Special Use Permit	Any work that may have an affect on listed species or their habitat; or projects within National Wildlife Refuges	USACE coordinates consultation with USFWS for ESA listed species during their permit review. Also includes the Migratory Bird Treaty Act and Bald and Golden Eagle Protection Act compliance. Season restrictions on construction could be imposed.	Rare, Threatened \& Endangered Species Search; Preparation of Reports and Conservation Plans	\$80,800	\$200,000
FAA	Airports / Airspace	Federal Aviation Administration (FAA) Notification	New or Replacement Structures near Airports	Depending on construction locations, this permit may only be needed for OP work.	Obstruction Analysis, Mitigation Plan (assumes Engineering Cost)	\$3,000	\$9,000
STATE							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
NYS Public Service Commission / Department of Public Service (NYSDPS)	Article VII	Article VII: Certificate of Environmental Compatibility and Public Need and Environmental Management \& Construction Plan (EM\&CP)	Article 7: Major electric transmission facilities with design capacity of 100 kV or more extending for at least 10 miles or 125 kV and over extending a distance of 1 mile or more (some exclusions for underground transmission applies)	Article 7 will incorporate all of the required State and Local approvals (costed separately), as well as Engineering and Environmental Studies and Public Outreach. Intervenor Fund payment expected to be $\$ 350,000$. An Environmental Management \& Construction Plan (EM\&CP) must be prepared and approved by the PSC. (see 16 NYCRR Parts 85 through 88)	Includes Reports and Plans required for State and Federal Agency Permits, as well as EM\&CP, EMF, Noise, Air, Visual Impact Assessment, Invasive Species Control Plan, Mitigation Plans		
						\$850,000	\$3,350,000

NYSDEC	Article 15 Stream Disturbance; Article 24 Wetlands, Open Waters, Wetlands Buffers (100' for Freshwater Wetland)	Individual Permit (IP) (unless developer has General Permit (GP))	Any work within the boundaries of regulated waterways or wetlands, and wetland adjacent areas	Any disturbance within wetlands and/or below mean high tide will require an IP. Areas of temporary disturbance will likely require restoration, including a monitoring and maintenance period. Permanent disturbance will require offsite mitigation up to 3:1 area ratio; also includes a monitoring and maintenance period. GP may only be applicable if project ground disturbance is located outside of wetlands areas (above MHW).	Wetland Delineation; Wetland Restoration/Mitigation Plan		
						\$12,000	\$53,000
NYSDEC	Stormwater (If >1 Acre Soil Disturbance)	SPDES General Permit for Stormwater Discharges from Construction Activities GP-0-15-002 \& SWPPP	Project areas of soil disturbance	If project involves 1 acre or more soil disturbance, then the GP is required. If located within a Regulated MS4 Municipality, additional coordination may be needed. Weekly inspections by a Qualified Inspector during construction will be required.	SWPPP (assumes Engineering Cost includes Sediment \& Erosion Control Plan, Hydraulic \& Hydrology Studies, Stormwater Management Design)		
						\$11,200	\$38,000
NYSDOS	State Coastal Management Program Mapped Coastal Area Boundary	Coastal Consistency Concurrence	Projects within the NYSDOS designated Coastal Zone; and consistency with Local Waterfront Revitalization Plans (LWRPs); e.g., Town of Grand Island LWRP	Online mapping available to check if within coastal zone, a significant coastal fish \& wildlife habitat (SCFWH), a local waterfront revitalization program area (LWRP), or a comprehensive management program areas (CMP)			
						\$3,400	\$15,000
NYSHPO	National Historic Preservation Act (NHPA) Section 106: State and Federal Historic Places; State Mapped Archeologically Sensitive Areas	Cultural Resource Information System (CRIS) Determination	Local, State, or Federal eligible or designated historic places and/or areas of archeological sensitivity (in off-road areas and areas that have not been previously disturbed)	NYSDEC EAF Online Mapper identifies State or National Register of Historic Places and archeological sensitive areas within or adjacent to the project site. Formally enter project information and supporting documents into SHPO's online CRIS program. Staff will review and email a determination of impacts letter	Phase 1A \& 1B Archaeological Studies (not included in costing)	\$34,400	\$112,600
NYS NHP	Threatened and Endangered Species	Consultation	Activities that may affect T\&E species or their habitat.		See USFWS	\$1,200	\$6,400
NYSDOT/NYS Thruway Authority/FHWA	State Roadways	Highway Work Permit/Utility Permit, Vegetation Management Permit; Easement	Any work within or crossing State highway ROW	May require restoration landscaping coordination. Typically requires compliance with NEPA including SHPO and USFWS effects determination	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$17,000	\$200,000
NYS Canal Corporation	Erie Canal - jurisdiction varies along edge	Canal Occupancy \& Work Permit (TA-W99072)	Any work involving the Erie Canal	Must coordinate with Division Permit Engineer about particular section of canal being affected. Commercial permit fee = $\$ 25$ plus \$2,000,000 additional General Aggregate Liability Insurance	Work Zone Traffic Control (WZTC) Plan (assumes included in Engineering Cost)	\$3,800	\$3,800

NYS Dept. of Agriculture and Markets	All agricultural lands (including Agricultural Districts)	Part of Article 7 \& Article 10 Review process	Any work impacting agricultural land	Must minimize impacts and restore damage to agricultural land, and coordinate with County Soil \& Water Conservation District; Vineyards are a major concern in WNYS. Pre-application conference with PSC, DEC and Ag\& Markets recommended. Must develop EM\&CP in conformance with Art. 7/10 Certificate Conditions. Agricultural Monitor must oversee construction \& restoration; requisite 2-yrs post restoration monitoring.	Crop/Pasturing Mitigation Plan (not included in costing)	\$11,000	\$24,000
REGIONAL							
Railroads	Railroad crossings	Consultation-permits may be required; Easement	Access / new structures on RR property		Easement area survey (not included in costs)	\$11,000	\$200,000
LOCAL/MUNICIPAL							
Agency	Jurisdiction	Permit/Approval	Primary Regulated Areas	General Permitting Notes	Potential Studies/Plans		
County Dept. of Public Works	County Roadways	Lane Closure Permit, Highway Work or Access Permit	Work within county roadways and right-of-ways			\$6,000	\$40,000
Town, City or Village	Municipal Stormwater (MS4) Review	Approval of SWPPP or EM\&CP	Project areas of soil disturbance		See NYSDEC SPDES	\$6,000	\$35,000
Town, City or Village	Variable	Building Permits	New Structures			\$18,000	\$92,000
Town, City or Village	Municipal Roadways	Highway Work Permit; Road Opening Permit	Work within municipal roadways and right-of-ways	Individual Towns/Villages must be consulted on a project specific basis to determine notification and/or permitting procedures. Permit application names vary (e.g. road obstruction permit)		\$6,000	\$35,000
Town, City or Village	Wetlands	Wetland Permit / Conservation Approvals	Mapped wetlands and wetland adjacent areas (buffer width variable)		See USACE / NYSDEC Art. 24	\$6,000	\$52,000

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T017-Exelon Transmission

WNY TRANSMISSION PROJECT - ENVIRONMENTAL MITIGATION COST ESTIMATE FOR T017

	Offsite Wetland Mitigation*		Farmland**	
	Min.	Max.	Min.	Max.
Area	106 acres	106 acres	68.5 acres	137 acres
Cost/Acre	$\$ 50,000$	$\$ 100,000$	$\$ 503$	$\$ 503$
Ratio	$1: 1$	$3: 1$	$1: 1$	$1: 1$
Total	$\$ 5,300,000$	$\$ 31,800,000$	$\$ 34,455$	$\$ 68,911$

T017 MITIGATION	Minimum	Maximum	Expected Value
TOTAL	$\$ 5,334,455$	$\$ 31,868,911$	$\$ 18,601,683$

*Offsite wetland mitigation area assumes clearing of NWI Forested/Shrub
Wetland Approx. 6.68 miles (35270 LF) by 125' ROW width and 0.43 miles (2270
LF) by 95' ROW width; Max. cost per acre assumes additional mitigation required for permanent impacts of proposed structures in non-forested wetlands; cost per acre Min. and Max. reduced due to area total over 50 acres; includes design and installation costs only; does not include land acquisition or long term monitoring.
**Farmland mitigation based on corn bushel yield at 129 BU/Acre and \$3.9/BU (production numbers from 2016 USDA NYS Agriculture Overview), area assumes 22.6 miles (119328 LF) based on Agricultural District Lands adjacent to the project route (GEI calculation) by 25' Wide (Min.) or 50' Wide (Max.); does not include land acquisition

Client: NYISO

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T017-Exelon Transmission

SUBSTATION ENGINEERING
REAL ESTATE ESTIMATE
(NEW ROW)
Revision: 3
COUNTY:
DEVELOPER:
NIAGARA \& ERIE
EXELON (T017)
NIAGARA - DYSINGER - STOLLE SEGMENT

		Area (Acres)	Total Cost
A NIAGARA COUNTY Sub Total (A) 52.72 $\$ 04,006.00$			

B	ERIE COUNTY			
	Sub Total (B)	0.68	$\$$	$4,376.00$

Total (A + B)	53.40	\$	$408,382.00$

Client: NYISO

Project: Western Transmission Project Evaluation

Document No: T017-Exelon Transmission
REAL ESTATE ESTIMATE
(NEW ROW)
Revision: 3
COUNTY:
DEVELOPER:
SEGMENT:

ERIE

EXELON (T017)
STOLLE TO GARDENVILLE SEGMENT

		Area (Acres)	Total Cost
	Total	124.71	$5,518,485.00$

COUNTY: DEVELOPER: SEGMENT:		NIAGARA AND ERIE			
		EXELON (TO17)			
		NIAGARA TO STOLLE TO SEGMENT			
	DEVELOPER	SEGMENT	COUNTY	INCUMBENT UTILITY (ROW)	total row
				(ACRES)	
T017	Exelon Transmission	Niagara to Stolle - 47.12 miles	Niagara	358.49	0
			Erie	296.31	
		Stolle Rd SS to Gardenville SS - 12.10 miles	Erie	14.63	\$ 73,000

Project: Western Transmission Project Evaluation
Subject: Cost Estimate
Document No: T017-Exelon Transmission

REAL ESTATE ESTIMATE

COUNTY:
DEVELOPER:
SEGMENT:
(HOUSES)
EXELON
STOLLE ROAD SS TO GARDENVILLE SS

		Total Valuation of Property with 3\% Escalation/year (as of 2017)	
	Total Valuation Cost	$\$ \quad 1,090,544.99$	

a) Cost Estimate is based on 2017 rates.
b)We have assumed a construction schedule of 10 months, with no breaks in the schedule. Six months have been added to the construction schedule
PM time for start up and close out works and float.
c) Stringing rates allow for protection over crossings (such as rider poles).
d) We have assumed a typical work week (6 x 10 hour days).
e) We have assumed the Access Road included in Developer Estimate will be Type 1 Gravel Type.
f) Costs will vary for handling and disposal of contaminated spoils, depending on type of contaminants and availability / location of the appropriate tipping facility. Since there is not enough information to provide a quantified estimate for this item, allowance is included in the contingency monies. g) Costs have been developed based on historical data from Projects of a similar nature (AACE Class 5 and 4 Estimating Practices). We have not engaged any subcontractors or material vendors for formal quotes. h) Estimated quantities have been used for items in red text in Section 1 of the Estimate (CLEARING \& ACCESS FOR T-LINE CONSTRUCTION). These items were not quantified in the Developers Estimate, however we believe that they are necessary for the works. i) Foundation rates include supply and installation of materials. Drilled Pier rates include supply and testing of concrete, rebar cage and the use of temp or permanent casing. j) Assumes all environmental data and project details provided are accurate unless noted otherwise k) Considers entire route for costing (Niagara to Packard, Niagara to Stolle, Gardenville to Stolle) I) USFWS T\&E Assumes that $1 / 4 ~ o f ~ t h e ~ T o t a l ~ L i n e ~ i n ~ R i g h t ~ o f ~ W a y ~ w i l l ~ r e q u i r e ~ f i e l d ~ s u r v e y ~ f o r ~ T \& E ~(A p p r o x . ~ 15.6 ~ m i l e s) ~$ m) NEPA-Assumes no NEPA because Art VII n) SHPO-Assumes consultation and Phase 1A/1B archeological studies with field survey for 50\% of Total Line in Right of Way (Approx. 31.2 miles) o) NYSDOT/FHWA-Assumes any required NEPA coordination/requirements are covered under Article VII p) Assumes no coordination with National Parks Service or OPRHP/State Parks q) USACE wetland delineation costs based on total Line Miles in Wetlands (8.94) - NWI and NYSDEC totals calculated by GEI for Niagara to Stolle (7.59 miles) and Stolle to Gardenville (1.35 miles) r) NYSDEC delineations overlap and are accounted for in USACE costing.

s) Offsite wetland mitigation area costs based on a total of approximately 6.68 miles of impacts anticipated by clearing of NWI Forested/Shrub Wetland for Niagara to Stolle and 0.43 miles for Stolle to Gardenville (calculated by GEI based on NWI mapper legend categories) Assumes clearing a width of 125 feet within the Niagara to Stolle Road Right of Way and a width of 95 feet in the Stolle to Gardenville ROW. Minimum costs at $\$ 50,000 /$ acre and $1: 1$ ratio, maximum costs at $\$ 100,000 /$ acre and $3: 1$ ratio for additional permanent impacts of proposed structures in non-forested wetlands. Costing includes design and installation costs only and does not include land acquisition or long term monitoring. Minimum and maximum costs for this proposal assumes a reduced mitigation cost/acre due to size of mitigation.
t) Agricultural mitigation assumes timber matting impacts and pad impacts on a total of 22.56 calculated by GEI from miles of adjacent agriculture district land (Niagara to Stolle and Stolle to Gardenville) requires crop damage payments based on USDA 2016 NYS Agriculture Overview corn yield and bushel price/acre. Minimum assumes 25 -foot-wide impact, Maximum assumes 50 -foot-wide impact.
u) No tree survey or replanting required outside regulated wetlands areas
v) Article VII Intervenor Fund payment expected to be $\$ 350,000$
w) Mitigation costs for landscaping only (no paving, sidewalks, sound walls, etc.)
x) SUF pricing is included at the end of the estimate workbook (costs excluded from main estimate).
y) SUF pricing includes 35% to cover Contractor markup (15\%) and contingency (20\%)
z) SUF reconductor rate is based on Niagara-Packard (National Grid) reconductor estimate, pro-rated to a rate / mile. Note that this is based on conductor, shieldwire and hardware pricing only and does not include structure or foundation works.
aa) System Upgrade Facilities Contingency is allowance for potential additional system upgrades including overdutied breakers, protection changes, unidentified thermal issues, etc that may be identified as detailed studies are completed.

